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Chapter 01.01 
Introduction to Numerical Methods 
 
 
 
 
After reading this chapter, you should be able to: 

1. understand the need for numerical methods, and 
2. go through the stages (mathematical modeling, solving and implementation) of 

solving a particular physical problem. 
 
Mathematical models are an integral part in solving engineering problems.  Many times, 
these mathematical models are derived from engineering and science principles, while at 
other times the models may be obtained from experimental data.   
 Mathematical models generally result in need of using mathematical procedures that 
include but are not limited to  

(A) differentiation, 
(B) nonlinear equations, 
(C) simultaneous linear equations, 
(D) curve fitting by interpolation or regression, 
(E) integration, and 
(F) differential equations. 

These mathematical procedures may be suitable to be solved exactly as you must have 
experienced in the series of calculus courses you have taken, but in most cases, the 
procedures need to be solved approximately using numerical methods.  Let us see an 
example of such a need from a real-life physical problem.   
 To make the fulcrum (Figure 1) of a bascule bridge, a long hollow steel shaft called 
the trunnion is shrink fit into a steel hub. The resulting steel trunnion-hub assembly is then 
shrink fit into the girder of the bridge. 
 

 
 Figure 1 Trunnion-Hub-Girder (THG) assembly. 

Trunnion 

Hub 

Girder 
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 This is done by first immersing the trunnion in a cold medium such as a dry-
ice/alcohol mixture.  After the trunnion reaches the steady state temperature of the cold 
medium, the trunnion outer diameter contracts.  The trunnion is taken out of the medium and 
slid through the hole of the hub (Figure 2).   

                               
 Figure 2  Trunnion slided through the hub after contracting 
 
 When the trunnion heats up, it expands and creates an interference fit with the hub.  
In 1995, on one of the bridges in Florida, this assembly procedure did not work as designed.  
Before the trunnion could be inserted fully into the hub, the trunnion got stuck.  Luckily, the 
trunnion was taken out before it got stuck permanently.  Otherwise, a new trunnion and hub 
would needed to be ordered at a cost of $50,000.  Coupled with construction delays, the total 
loss could have been more than a hundred thousand dollars.   
                  Why did the trunnion get stuck?  This was because the trunnion had not 
contracted enough to slide through the hole.  Can you find out why? 
 A hollow trunnion of outside diameter "363.12  is to be fitted in a hub of inner 
diameter "358.12 .  The trunnion was put in dry ice/alcohol mixture (temperature of the fluid 
- dry ice/alcohol mixture is F108°− ) to contract the trunnion so that it can be slid through the 
hole of the hub.  To slide the trunnion without sticking, a diametrical clearance of at least 

"01.0  is required between the trunnion and the hub.  Assuming the room temperature is 
F80° , is immersing the trunnion in dry-ice/alcohol mixture a correct decision? 

 To calculate the contraction in the diameter of the trunnion, the thermal expansion 
coefficient at room temperature is used.  In that case the reduction D∆  in the outer diameter 
of the trunnion is 
 TDD ∆=∆ α           (1) 
where 

D = outer diameter of the trunnion, 
=α coefficient of thermal expansion coefficient at room temperature, and  
=∆T change in temperature, 

Given 
 D = "363.12  
 Fin/in/1047.6 6 °×= −α  at F80°  

=∆T roomfluid TT −   
        = 80108 −−          
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       F188°−=  
where  

fluidT = temperature of dry-ice/alcohol mixture 

roomT = room temperature 
the reduction in the outer diameter of the trunnion is given by 

( )( )1881047.6)363.12( 6 −×=∆ −D  
        = "01504.0−  
 So the trunnion is predicted to reduce in diameter by "01504.0 .  But, is this enough 
reduction in diameter?  As per specifications, the trunnion needs to contract by 
 = trunnion outside diameter - hub inner diameter + diametric clearance 
 = 12.363 – 12.358 + 0.01 
 = "015.0  
 So according to his calculations, immersing the steel trunnion in dry-ice/alcohol 
mixture gives the desired contraction of greater than "015.0  as the predicted contraction is 

"01504.0 .  But, when the steel trunnion was put in the hub, it got stuck.  Why did this 
happen?  Was our mathematical model adequate for this problem or did we create a 
mathematical error? 
 As shown in Figure 3 and Table 1, the thermal expansion coefficient of steel 
decreases with temperature and is not constant over the range of temperature the trunnion 
goes through.  Hence, Equation (1) would overestimate the thermal contraction. 
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Figure 3  Varying thermal expansion coefficient as a function of temperature for cast 
steel. 

 
The contraction in the diameter of the trunnion for which the thermal expansion coefficient 
varies as a function of temperature is given by 

∫=∆
fluid

room

T

T

dTDD α                                            (2) 

So one needs to curve fit the data to find the coefficient of thermal expansion as a function of 
temperature.  This is done by regression where we best fit a curve through the data given in 
Table 1.  In this case, we may fit a second order polynomial 

2
210 TaTaa ×+×+=α         (3) 
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           Table 1   Instantaneous thermal expansion coefficient as a function of temperature. 

Temperature Instantaneous 
Thermal Expansion 

F°  Fμin/in/°  
80 6.47 
60 6.36 
40 6.24 
20 6.12 
0 6.00 

-20 5.86 
-40 5.72 
-60 5.58 
-80 5.43 
-100 5.28 
-120 5.09 
-140 4.91 
-160 4.72 
-180 4.52 
-200 4.30 
-220 4.08 
-240 3.83 
-260 3.58 
-280 3.33 
-300 3.07 
-320 2.76 
-340 2.45 

The values of the coefficients in the above Equation (3) will be found by polynomial 
regression (we will learn how to do this later in Chapter 06.04).  At this point we are just 
going to give you these values and they are 
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to give the polynomial regression model (Figure 4) as 
2

210 TaTaa ++=α  
   21196 T101.2278T106.1946106.0150 −−− ×−×+×=  

Knowing the values of 0a , 1a  and 2a , we can then find the contraction in the trunnion 
diameter as 

dTTaTaaDD
fluid

room

T

T

)( 2
210∫ ++=∆  

]
3

)(
2

)(
)([      

33

2

22
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roomfluidroomfluid
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aTTaD

−
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+−=                          (4) 
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which gives 
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Figure 4   Second order polynomial regression model for coefficient of thermal expansion as 
a function of temperature. 

 
What do we find here?  The contraction in the trunnion is not enough to meet the required 
specification of "015.0 .  
 So here are some questions that you may want to ask yourself? 

1. What if the trunnion were immersed in liquid nitrogen (boiling 
temperature F321°−= )?  Will that cause enough contraction in the trunnion?   

2. Rather than regressing the thermal expansion coefficient data to a second order 
polynomial so that one can find the contraction in the trunnion OD, how would you 
use Trapezoidal rule of integration for unequal segments?  What is the relative 
difference between the two results?   

3. We chose a second order polynomial for regression.  Would a different order 
polynomial be a better choice for regression?  Is there an optimum order of 
polynomial you can find? 

 As mentioned at the beginning of this chapter, we generally see mathematical 
procedures that require the solution of nonlinear equations, differentiation, solution of 
simultaneous linear equations, interpolation, regression, integration, and differential 
equations.  A physical example to illustrate the need for each of these mathematical 
procedures is given in the beginning of each chapter.  You may want to look at them now to 
understand better why we need numerical methods in everyday life. 
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Chapter 01.02 
Measuring Errors 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. find the true and relative true error, 
2. find the approximate and relative approximate error, 
3. relate the absolute relative approximate error to the number of significant digits 

at least correct in your answers, and 
4. know the concept of significant digits. 

 
 In any numerical analysis, errors will arise during the calculations.  To be able to deal 
with the issue of errors, we need to  

(A) identify where the error is coming from, followed by 
(B) quantifying the error, and lastly 
(C) minimize the error as per our needs.   

In this chapter, we will concentrate on item (B), that is, how to quantify errors. 
 
Q: What is true error? 
A: True error denoted by tE  is the difference between the true value (also called the exact 

value) and the approximate value. 
True Error   True value – Approximate value 

 
Example 1 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 
by 

h

xfhxf
xf

)()(
)(


  

 of )2(f   For xexf 5.07)(   and 3.0h , find 
 a) the approximate value of )2(f   
 b) the true value of )2(f   
 c) the true error for part (a) 
Solution 

a)  
h

xfhxf
xf

)()(
)(
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For 2x  and 3.0h ,  

3.0

)2()3.02(
)2(

ff
f


  

          
3.0

)2()3.2( ff 
  

                     
3.0

77 )2(5.0)3.2(5.0 ee 
  

          
3.0

028.19107.22 
  

                     265.10  
b) The exact value of )2(f  can be calculated by using our knowledge of differential calculus. 

xexf 5.07)(   
xexf 5.05.07)('   

          xe 5.05.3  
So the true value of )2('f  is 

)2(5.05.3)2(' ef   
           5140.9  
c) True error is calculated as 
 tE = True value – Approximate value 

                265.105140.9   
     75061.0  
The magnitude of true error does not show how bad the error is.  A true error of 722.0tE  

may seem to be small, but if the function given in the Example 1 
were ,107)( 5.06 xexf  the true error in calculating )2(f   with ,3.0h  would be 

.1075061.0 6tE   This value of true error is smaller, even when the two problems are 

similar in that they use the same value of the function argument, 2x  and the step size, 
3.0h .  This brings us to the definition of relative true error. 

 
Q: What is relative true error? 
A:  Relative true error is denoted by t  and is defined as the ratio between the true error and 

the true value. 

Relative True Error 
Value True

Error True
  

 

Example 2 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 
by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(   and 3.0h , find the relative true error at 2x . 
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Solution 

From Example 1,  

tE = True value – Approximate value 

                265.105140.9   
     75061.0  
Relative true error is calculated as 

Value True

Error True
t  

     
5140.9

75061.0
  

                078895.0  
Relative true errors are also presented as percentages. For this example, 

%1000758895.0 t  

     %58895.7  
Absolute relative true errors may also need to be calculated. In such cases, 

|075888.0| t  

                  = 0.0758895 
                  = %58895.7  
 
Q: What is approximate error? 
A: In the previous section, we discussed how to calculate true errors.  Such errors are 
calculated only if true values are known.  An example where this would be useful is when 
one is checking if a program is in working order and you know some examples where the 
true error is known.  But mostly we will not have the luxury of knowing true values as why 
would you want to find the approximate values if you know the true values.  So when we are 
solving a problem numerically, we will only have access to approximate values. We need to 
know how to quantify error for such cases. 
        Approximate error is denoted by aE  and is defined as the difference between the 

present approximation and previous approximation. 
       Approximate Error Present Approximation – Previous Approximation 
 
Example 3 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 
by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  and at 2x , find the following 
 a) )2(f   using 3.0h  
 b) )2(f   using 15.0h  
 c) approximate error for the value of )2(f   for part (b)  
Solution 

a) The approximate expression for the derivative of a function is 
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h

xfhxf
xf

)()(
)('


 . 

For 2x  and 3.0h ,  

3.0

)2()3.02(
)2('

ff
f


  

           
3.0

)2()3.2( ff 
  

                      
3.0

77 )2(5.0)3.2(5.0 ee 
  

           
3.0

028.19107.22 
  

                      265.10  
b) Repeat the procedure of part (a) with ,15.0h  

h

xfhxf
xf

)()(
)(


  

    For 2x  and 15.0h ,  

15.0

)2()15.02(
)2('

ff
f


  

          
15.0

)2()15.2( ff 
  

          
15.0

77 )2(5.0)15.2(5.0 ee 
  

          
15.0

028.1950.20 
  

          8799.9  
c) So the approximate error, aE is  

             aE Present Approximation – Previous Approximation 

                   265.108799.9   
                   38474.0  
The magnitude of approximate error does not show how bad the error is .  An approximate 
error of 38300.0aE  may seem to be small; but for xexf 5.06107)(  , the approximate 

error in calculating )2('f  with 15.0h  would be 61038474.0 aE . This value of 

approximate error is smaller, even when the two problems are similar in that they use the 
same value of the function argument, 2x , and 15.0h  and 3.0h . This brings us to the 
definition of relative approximate error. 
 
Q: What is relative approximate error? 
A: Relative approximate error is denoted by a  and is defined as the ratio between the 

approximate error and the present approximation. 

             Relative Approximate Error 
ionApproximatPresent 

Error eApproximat
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Example 4 

The derivative of a function )(xf  at a particular value of x  can be approximately calculated 
by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  , find the relative approximate error in calculating )2(f  using values from 
3.0h  and 15.0h . 

Solution 

From Example 3, the approximate value of 263.10)2( f  using 3.0h  and 

8800.9)2(' f using 15.0h . 

aE Present Approximation – Previous Approximation 

                    265.108799.9   
                    38474.0  
The relative approximate error is calculated as  

a ionApproximatPresent 

Error eApproximat
 

                 
8799.9

38474.0
  

                 038942.0  
Relative approximate errors are also presented as percentages. For this example, 

%100038942.0 a  

                 = %8942.3  
Absolute relative approximate errors may also need to be calculated.  In this example 

|038942.0| a  

                  038942.0  or 3.8942% 
 
Q: While solving a mathematical model using numerical methods, how can we use relative 
approximate errors to minimize the error? 
A: In a numerical method that uses iterative methods, a user can calculate relative 
approximate error a  at the end of each iteration.  The user may pre-specify a minimum 

acceptable tolerance called the pre-specified tolerance, s .  If the absolute relative 

approximate error a  is less than or equal to the pre-specified tolerance s , that is,  || a s , 

then the acceptable error has been reached and no more iterations would be required.
 Alternatively, one may pre-specify how many significant digits they would like to be 
correct in their answer.  In that case, if one wants at least m  significant digits to be correct in 
the answer, then you would need to have the absolute relative approximate error, 

m
a

 2105.0|| %. 
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Example 5 

If one chooses 6 terms of the Maclaurin series for xe  to calculate 7.0e , how many significant 
digits can you trust in the solution? Find your answer without knowing or using the exact 
answer. 
Solution 

.................
!2

1
2


x

xe x  

Using 6 terms, we get the current approximation as  

!5

7.0

!4

7.0

!3

7.0

!2

7.0
7.01

5432
7.0 e  

       0136.2  
 Using 5 terms, we get the previous approximation as 

!4

7.0

!3

7.0

!2

7.0
7.01

432
7.0 e  

      0122.2  
The percentage absolute relative approximate error is 

100
0136.2

0122.20136.2



a  

      %069527.0  
Since %105.0 22a , at least 2 significant digits are correct in the answer of  

 0136.27.0 e  
 
Q: But what do you mean by significant digits?   
A: Significant digits are important in showing the truth one has in a reported number. For 
example, if someone asked me what the population of my county is, I would respond, “The 
population of the Hillsborough county area is 1 million”.  But if someone was going to give 
me a $100 for every citizen of the county, I would have to get an exact count.  That count 
would have been 1,079,587 in year 2003.  So you can see that in my statement that the 
population is 1 million, that there is only one significant digit, that is, 1, and in the statement 
that the population is 1,079,587, there are seven significant digits.  So, how do we 
differentiate the number of digits correct in 1,000,000 and 1,079,587?  Well for that, one may 
use scientific notation. For our data we show 

6

6

10079587.1587,079,1

101000,000,1




 

to signify the correct number of significant digits. 
Example 5 

Give some examples of showing the number of significant digits. 
Solution 

a) 0.0459 has three significant digits 
b) 4.590 has four significant digits 
c) 4008 has four significant digits 
d) 4008.0 has five significant digits 



Measuring Errors                                                                                                    01.02.7 
 

e) 310079.1   has four significant digits 
f) 3100790.1   has five significant digits 
g) 31007900.1   has six significant digits 
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Chapter 01.03 
Sources of Error 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. know that there are two inherent sources of error in numerical methods – round-
off and truncation error,  

2. recognize the sources of round-off and truncation error, and 
3. know the difference between round-off and truncation error. 
 

 Error in solving an engineering or science problem can arise due to several factors.  
First, the error may be in the modeling technique.  A mathematical model may be based on 
using assumptions that are not acceptable.  For example, one may assume that the drag force 
on a car is proportional to the velocity of the car, but actually it is proportional to the square 
of the velocity of the car.  This itself can create huge errors in determining the performance 
of the car, no matter how accurate the numerical methods you may use are.  Second, errors 
may arise from mistakes in programs themselves or in the measurement of physical 
quantities.  But, in applications of numerical methods itself, the two errors we need to focus 
on are 

1. Round off error 
2. Truncation error. 

 
Q: What is round off error? 

A: A computer can only represent a number approximately.  For example, a number like 
3

1
 

may be represented as 0.333333 on a PC.  Then the round off error in this case is  

30000003.0333333.0
3

1
 . Then there are other numbers that cannot be represented 

exactly. For example,   and 2  are numbers that need to be approximated in computer 
calculations. 
 
Q:  What problems can be created by round off errors? 
A: Twenty-eight Americans were killed on February 25, 1991.  An Iraqi Scud hit the Army 
barracks in Dhahran, Saudi Arabia. The patriot defense system had failed to track and 
intercept the Scud.  What was the cause for this failure?  
The Patriot defense system consists of an electronic detection device called the range gate.  It 
calculates the area in the air space where it should look for a Scud.  To find out where it 
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should aim next, it calculates the velocity of the Scud and the last time the radar detected the 
Scud.  Time is saved in a register that has 24 bits length.  Since the internal clock of the 
system is measured for every one-tenth of a second, 1/10 is expressed in a 24 bit-register as 
0.00011001100110011001100.  However, this is not an exact representation.  In fact, it 
would need infinite numbers of bits to represent 1/10 exactly.  So, the error in the 
representation in decimal format is 
 

                                 
Figure 1   Patriot missile (Courtesy of the US Armed Forces, 
http://www.redstone.army.mil/history/archives/patriot/patriot.html) 

 

8

2423224321

10537.9

)202021...21202020(
10

1








 

The battery was on for 100 consecutive hours, hence causing an inaccuracy of  

  

s3433.0
hr1

s3600
hr 100

s1.0

s
10537.9 8



 

 

 The shift calculated in the range gate due to s3433.0  was calculated as m687 .  For 
the Patriot missile defense system, the target is considered out of range if the shift was going 
to more than m137 . 
 
Q: What is truncation error? 
A: Truncation error is defined as the error caused by truncating a mathematical procedure. 
For example, the Maclaurin series for xe is given as  

....................
!3!2

1
32


xx

xe x  

This series has an infinite number of terms but when using this series to calculate xe , only a 
finite number of terms can be used.  For example, if one uses three terms to calculate xe , 
then 

.
!2

1
2x

xex   

the truncation error for such an approximation is 
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Truncation error = ,
!2

1
2











x
xe x  

       .......................
!4!3

43


xx

 

But, how can truncation error be controlled in this example?  We can use the concept of 
relative approximate error to see how many terms need to be considered.  Assume that one is 
calculating 2.1e  using the Maclaurin series, then 

...................
!3

2.1

!2

2.1
2.11

32
2.1 e  

Let us assume one wants the absolute relative approximate error to be less than 1%.  In Table 
1, we show the value of 2.1e , approximate error and absolute relative approximate error as a 
function of the number of terms, n . 

n  2.1e  aE  %a  

1 1 - - 
2   2.2 1.2 54.546 
3 2.92 0.72 24.658 
4 3.208 0.288 8.9776 
5 3.2944 0.0864 2.6226 
6 3.3151 0.020736 0.62550 

   
Using 6 terms of the series yields a a < 1%. 

Q: Can you give me other examples of truncation error? 
A: In many textbooks, the Maclaurin series is used as an example to illustrate truncation 
error.  This may lead you to believe that truncation errors are just chopping a part of the 
series.  However, truncation error can take place in other mathematical procedures as well.  
For example to find the derivative of a function, we define 

     
x

xfxxf
xf

x 



0

lim  

But since we cannot use ,0x we have to use a finite value of x , to give 

x

xfxxf
xf




 )()(
)(  

So the truncation error is caused by choosing a finite value of x as opposed to a .0x  
       For example, in finding )3(f   for 2)( xxf  , we have the exact value calculated as 
follows. 

2)( xxf   
From the definition of the derivative of a function,  

x

xfxxf
xf

x 





)()(
lim)(

0
 

          
x

xxx
x 






22

0

)()(
lim  
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x

xxxxx
x 






222

0

)(2
lim  

          )2(lim
0

xx
x




 

          x2  
This is the same expression you would have obtained by directly using the formula from your 
differential calculus class 

 1)(  nn nxx
dx

d
 

By this formula for  
2)( xxf   
xxf 2)(   

The exact value of )3(f   is 
32)3( f  

         6  
If we now choose 2.0x , we get 

2.0

)3()2.03(
)3(

ff
f


  

           
2.0

)3()2.3( ff 
  

            =
2.0

32.3 22 
 

            
2.0

924.10 
  

            
2.0

24.1
  

            2.6  
We purposefully chose a simple function 2)( xxf   with value of 2x and 2.0x  
because we wanted to have no round-off error in our calculations so that the truncation error 
can be isolated.  The truncation error in this example is 

.2.02.66   
Can you reduce the truncate error by choosing a smaller x ? 
Another example of truncation error is the numerical integration of a function, 


b

a

dxxfI )(  

 Exact calculations require us to calculate the area under the curve by adding the area 
of the rectangles as shown in Figure 2.  However, exact calculations requires an infinite 
number of such rectangles.  Since we cannot choose an infinite number of rectangles, we will 
have truncation error. 
 For example, to find  

 dxx
9

3

2 ,  
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we have the exact value as 

 
9

3

2dxx
9

3

3

3 









x
 

            






 


3

39 33

 

            234  
If we now choose to use two rectangles of equal width to approximate the area (see Figure 2) 
under the curve, the approximate value of the integral  

)69()()36()(
6

2

3

2
9

3

2 
 xx

xxdxx  

                       3)6(3)3( 22   
                       10827   
                       135  

        

y = x
2 

0

30

60

90

0 3 6 9 12

y

x

 
Figure 2   Plot of 2xy   showing the approximate area under the curve from 3x  to 

9x  using two rectangles. 
 
 Again, we purposefully chose a simple example because we wanted to have no round 
off error in our calculations.  This makes the obtained error purely truncation.  The truncation 
error is 

99135234   
Can you reduce the truncation error by choosing more rectangles as given in Figure 3?  What 
is the truncation error? 
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y = x
2 

0

30

60

90

0 1.5 3 4.5 6 7.5 9 10.5 12

y

x

 
Figure 3  Plot of 2xy   showing the approximate area under the curve from 

3x  to 9x  using four rectangles. 
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Chapter 01.04 
Binary Representation of Numbers 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. convert a base-10 real number to its binary representation, 
2. convert a binary number to an equivalent base-10 number. 

 
 In everyday life, we use a number system with a base of 10.  For example, look at the 
number 257.56.  Each digit in 257.56 has a value of 0 through 9 and has a place value.  It can 
be written as 

21012 10610710710510276.257 −− ×+×+×+×+×=  
In a binary system, we have a similar system where the base is made of only two digits 0 and 
1. So it is a base 2 system.  A number like (1011.0011) in base-2 represents the decimal 
number as 

( )
1875.11

)21212020()21212021()0011.1011( 10
43210123

2

=

×+×+×+×+×+×+×+×= −−−−

 

in the decimal system. 
 To understand the binary system, we need to be able to convert binary numbers to 
decimal numbers and vice-versa.   
 We have already seen an example of how binary numbers are converted to decimal 
numbers. Let us see how we can convert a decimal number to a binary number. For example 
take the decimal number 11.1875.  First, look at the integer part: 11. 

1. Divide 11 by 2.  This gives a quotient of 5 and a remainder of 1.  Since the 
remainder is 1, 10 =a . 

2. Divide the quotient 5 by 2.  This gives a quotient of 2 and a remainder of 1.  Since 
the remainder is 1, 11 =a . 

3. Divide the quotient 2 by 2.  This gives a quotient of 1 and a remainder of 0.  Since 
the remainder is 0, 02 =a . 

4. Divide the quotient 1 by 2.  This gives a quotient of 0 and a remainder of 1.  Since 
the remainder is , 13 =a . 

Since the quotient now is 0, the process is stopped.  The above steps are summarized in Table 
1. 
 

01.04.1 
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Table 1   Converting a base-10 integer to binary representation.  
 

 Quotient Remainder 
11/2 5 01 a=  
5/2 2 11 a=  
2/2 1 20 a=  
1/2 0 31 a=  

Hence 

 
2

2012310

)1011(
)()11(

=
= aaaa

 

For any integer, the algorithm for finding the binary equivalent is given in the flow chart on 
the next page. 
Now let us look at the decimal part, that is, 0.1875. 

1. Multiply 0.1875 by 2.  This gives 0.375.  The number before the decimal is 0 and the 
number after the decimal is 0.375.  Since the number before the decimal is 0, 01 =−a . 

2. Multiply the number after the decimal, that is, 0.375 by 2.  This gives 0.75.  The 
number before the decimal is 0 and the number after the decimal is 0.75.  Since the 
number before the decimal is 0, 02 =−a . 

3. Multiply the number after the decimal, that is, 0.75 by 2.  This gives 1.5.  The number 
before the decimal is 1 and the number after the decimal is 0.5.  Since the number 
before the decimal is 1, 13 =−a . 

4. Multiply the number after the decimal, that is, 0.5 by 2.  This gives 1.0.  The number 
before the decimal is 1 and the number after the decimal is 0.  Since the number 
before the decimal is 1, 14 =−a .   

Since the number after the decimal is 0, the conversion is complete.  The above steps are 
summarized in Table 2. 
 
Table 2.  Converting a base-10 fraction to binary representation. 
 

 Number Number after 
decimal 

Number before 
decimal 

0.1875×2 0.375 0.375 10 −= a  
0.375×2 0.75 0.75 20 −= a  
0.75×2 1.5 0.5 31 −= a  
0.5×2 1.0 0.0 41 −= a  
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Start 

Input (N)10 

i = 0 

Divide N by 2 to get 
quotient Q & remainder R 

ai = R 

Is Q = 0? 

n = i 
(N)10 = (an. . .a0)2 

STOP 

Integer N to be converted 
to binary format 

i = i+1 

No 

Yes 
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Hence 

 
2

2432110

)0011.0(
)()1875.0(

=
= −−−− aaaa

 

The algorithm for any fraction is given in a flowchart on the next page. 
Having calculated  
 210 )1011()11( =   
and  
 210 )0011.0()1875.0( = ,  
we have 

210 )0011.1011()1875.11( = . 
In the above example, when we were converting the fractional part of the number, we were 
left with 0 after the decimal number and used that as a place to stop.  In many cases, we are 
never left with a 0 after the decimal number.  For example, finding the binary equivalent of 
0.3 is summarized in Table 3. 
 
Table 3.  Converting a base-10 fraction to approximate binary representation. 
 

 Number Number after 
decimal 

Number before 
decimal 

0.3× 2 0.6 0.6 10 −= a  
0.6× 2 1.2 0.2 21 −= a  
0.2× 2 0.4 0.4 30 −= a  
0.4× 2 0.8 0.8 40 −= a  
0.8× 2 1.6 0.6 51 −= a  

 
As you can see the process will never end. In this case, the number can only be approximated 
in binary format, that is, 

225432110 )01001.0()()3.0( =≈ −−−−− aaaaa  
Q: But what is the mathematics behinds this process of converting a decimal number to 
binary format? 
A: Let z  be the decimal number written as 

yxz .=  
where  
 x  is the integer part and y  is the fractional part. 
We want to find the binary equivalent of x .  So we can write 
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Start 

Input (F)10 

1i −=  

Multiply F by 2 to get 
number before decimal, S 
and after decimal, T 

ai = S 

Is T = 0? 

n = i 
(F)10 = (a-1. . .a-n)2 

STOP 

Fraction F to be converted 
to binary format 

1ii −=  

No 

Yes 



01.04.6                                                        Chapter 01.04 
 

  
 0

0
1

1 2...22 aaax n
n

n
n +++= −

−  
If we can now find naa .,.,.0 in the above equation then  

20110 )...()( aaax nn −=  
We now want to find the binary equivalent of y .  So we can write 

m
mbbby −

−
−

−
−

− +++= 2...22 2
2

1
1  

If we can now find mbb −− .,.,.1 in the above equation then  

22110 )...()( mbbby −−−=  
Let us look at this using the same example as before.   
 
Example 1 

Convert 10)1875.11(  to base 2. 
Solution 

To convert 10)11(  to base 2, what is the highest power of 2 that is part of 11.  That power is 3, 
as 823 =  to give  

3211 3 +=  
What is the highest power of 2 that is part of 3.  That power is 1, as 221 =  to give 

123 1 +=  
So 

1223211 133 ++=+=  
What is the highest power of 2 that is part of 1.  That power is 0, as 120 =  to give 
  021 =  
Hence 

2
012301313

10 )1011(21212021222122)11( =×+×+×+×=++=++=  
To convert 10)1875.0(  to the base 2, we proceed as follows.  What is the smallest negative 
power of 2 that is less than or equal to 0.1875.  That power is 3−  as 125.02 3 =− . 
So 

0625.021875.0 3 += −  
What is the next smallest negative power of 2 that is less than or equal to 0.0625.  That 
power is 4−  as 0625.02 4 =− . 
So 

43 221875.0 −− +=  
Hence 

2
4321433

10 )0011.0(21212020220625.02)1875.0( =×+×+×+×=+=+= −−−−−−−  
Since 

210 )1011()11( =  
and 

210 )0011.0()1875.0( =  
we get  
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210 )0011.1011()1875.11( =  
Can you show this algebraically for any general number? 
 
Example 2 

Convert 10)875.13(  to base 2. 
Solution 

For 10)13( , conversion to binary format is shown in Table 4. 
 
Table 4.  Conversion of base-10 integer to binary format. 

 Quotient Remainder 
13/2 6 01 a=  
6/2 3 10 a=  
3/2 1 21 a=  
1/2 0 31 a=  

 
So  
 210 )1101()13( = . 
Conversion of 10)875.0(  to binary format is shown in Table 5. 
 
Table 5.  Converting a base-10 fraction to binary representation. 
 

 Number Number after 
decimal 

Number before 
decimal 

0.875×2 1.75 0.75 11 −= a  
0.75×2 1.5 0.5 21 −= a  
0.5×2 1.0 0.0 31 −= a  

 
So  
 210 )111.0()875.0( =  
Hence 

210 )111.1101()875.13( =  
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Chapter 01.05 
Floating Point Representation 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. convert a base-10 number to a binary floating point representation, 
2. convert a binary floating point number to its equivalent base-10 number, 
3. understand the IEEE-754 specifications of a floating point representation in a 

typical computer, 
4. calculate the machine epsilon of a representation. 

 
Consider an old time cash register that would ring any purchase between 0 and 999.99 units 
of money.  Note that there are five (not six) working spaces in the cash register (the decimal 
number is shown just for clarification).  
Q: How will the smallest number 0 be represented? 
A: The number 0 will be represented as 

0 0 0 . 0 0
 
Q: How will the largest number 999.99 be represented? 
A: The number 999.99 will be represented as 

9 9 9 . 9 9
 
Q: Now look at any typical number between 0 and 999.99, such as 256.78.  How would it be 
represented? 
A: The number 256.78 will be represented as 

 2 5 6 . 7 8
 
Q: What is the smallest change between consecutive numbers? 
A: It is 0.01, like between the numbers 256.78 and 256.79.   
 
Q: What amount would one pay for an item, if it costs 256.789? 
A:  The amount one would pay would be rounded off to 256.79 or chopped to 256.78.  In 
either case, the maximum error in the payment would be less than 0.01.   
 
Q: What magnitude of relative errors would occur in a transaction? 
A: Relative error for representing small numbers is going to be high, while for large numbers 
the relative error is going to be small.   
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 For example, for 256.786, rounding it off to 256.79 accounts for a round-off error of 
004.079.256786.256  .  The relative error in this case is 

100
786.256

004.0



t  

       %001558.0 . 
 For another number, 3.546, rounding it off to 3.55 accounts for the same round-off 
error of 004.055.3546.3  .  The relative error in this case is 

100
546.3

004.0



t  

      %11280.0 . 
 
Q: If I am interested in keeping relative errors of similar magnitude for the range of numbers, 
what alternatives do I have? 
A: To keep the relative error of similar order for all numbers, one may use a floating-point 
representation of the number.  For example, in floating-point representation, a number  
 256.78 is written as 2105678.2  ,  

 003678.0  is written as ,10678.3 3  and  

 789.256  is written as 21056789.2  .  
The general representation of a number in base-10 format is given as 

exponent10  mantissa sign   
or for a number y , 

emy 10  
Where 

1-or  1  number,   theofsign   
10   1 mantissa,   mm  

exponent integer   e (also called ficand) 
Let us go back to the example where we have five spaces available for a number.  Let us also 
limit ourselves to positive numbers with positive exponents for this example.  If we use the 
same five spaces, then let us use four for the mantissa and the last one for the exponent.  So 
the smallest number that can be represented is 1 but the largest number would be 910999.9  .  
By using the floating-point representation, what we lose in accuracy, we gain in the range of 
numbers that can be represented.  For our example, the maximum number represented 
changed from 99.999  to 910999.9  .   
 What is the error in representing numbers in the scientific format?  Take the previous 
example of 256.78.  It would be represented as 210568.2   and in the five spaces as 
 

2 5 6 8 2
Another example, the number 78.576329  would be represented as 510763.5   and in five 
spaces as 

5 7 6 3 5
 So, how much error is caused by such representation.  In representing 256.78, the 
round off error created is 020825678256 ...  , and the relative error is  
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%0077888.0100
78.256

02.0



t ,  

In representing 78.576329 , the round off error created is 78.2910763.578.576329 5  , 
and the relative error is  

%0051672.0100
78.576329

78.29
t .   

What you are seeing now is that although the errors are large for large numbers, but the 
relative errors are of the same order for both large and small numbers.  
 
Q: How does this floating-point format relate to binary format?   
A: A number y would be written as 

emy 2   
Where 

 = sign of number (negative or positive – use 0 for positive and 1 for negative), 
m = mantissa,    22 101  m  , that is,    1010 21  m , and 

e = integer exponent. 
 
Example 1 

Represent  1075.54 in floating point binary format.  Assuming that the number is written to a 

hypothetical word that is 9 bits long where the first bit is used for the sign of the number, the 
second bit for the sign of the exponent,  the next four bits for the mantissa, and the next three 
bits for the exponent,  
 
Solution 

    10)5(21011011.1)11.110110(75.54 2210   

The exponent 5 is equivalent in binary format as  
   210 1015   

Hence  

    2)101(21011011.175.54 210   

The sign of the number is positive, so the bit for the sign of the number will have zero in it. 
0  

The sign of the exponent is positive.  So the bit for the sign of the exponent will have zero in 
it. 
The mantissa 

1011m   
(There are only 4 places for the mantissa, and the leading 1 is not stored as it is always 
expected to be there), and 
the exponent 

101e . 
we have the representation as 
 

0 0 1 0 1 1 1 0 1
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Example 2  

What number does the below given floating point format 
0 1 1 0 1 1 1 1 0

represent in base-10 format.  Assume a hypothetical 9-bit word, where the first bit is used for 
the sign of the number, second bit for the sign of the exponent, next four bits for the mantissa 
and next three for the exponent.  
Solution 

Given 
Bit Representation Part of Floating point number
0 Sign of number 
1 Sign of exponent 
1011 Magnitude of mantissa 
110 Magnitude of exponent 

 
The first bit is 0, so the number is positive.   
The second bit is 1, so the exponent is negative. 
The next four bits, 1011, are the magnitude of the mantissa, so  

     1010
43210

2 6875.121212021211011.1  m  

The last three bits, 110, are the magnitude of the exponent, so 
     1010

012
2 6202121110 e  

The number in binary format then is  

    2110
2 21011.1   

The number in base-10 format is  
= 626875.1   

 0.026367 
 
Example 3 

A machine stores floating-point numbers in a hypothetical 10-bit binary word.  It employs 
the first bit for the sign of the number, the second one for the sign of the exponent, the next 
four for the exponent, and the last four for the magnitude of the mantissa. 

a) Find how 0.02832 will be represented in the floating-point 10-bit word. 
b) What is the decimal equivalent of the 10-bit word representation of part (a)? 

Solution 

a) For the number, we have the integer part as 0 and the fractional part as 0.02832 
Let us first find the binary equivalent of the integer part 

Integer part    210 00   

Now we find the binary equivalent of the fractional part 
 Fractional part:   202832.   

    205664.0   

    211328.0   

    222656.0   
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    245312.0   

    290624.0   

    281248.1   

    262496.1   

    224992.1   

    249984.0   

    299968.0   

    99936.1  
Hence 

   210 10000011100.002832.0   

   6
2 211001.1   

   6
2 21100.1   

The binary equivalent of exponent is found as follows 
 Quotient Remainder 
6/2 3 00 a  

3/2 1 11 a  

1/2 0 21 a  
So 

   210 1106   

So 

     2110
210 21100.102832.0   

                      20110
2 21100.1   

  
Part of Floating point number Bit Representation 
Sign of number is positive 0 
Sign of exponent is negative 1 
Magnitude of the exponent 0110 
Magnitude of mantissa 1100 

 
The ten-bit representation bit by bit is 

0 1 0 1 1 0 1 1 0 0
 
b) Converting the above floating point representation from part (a) to base 10 by following 
Example 2 gives 

   20110
2 21100.1   

 43210 2020212121     0123 202121202    

   106
10 275.1   

02734375.0  
Q: How do you determine the accuracy of a floating-point representation of a number? 
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A: The machine epsilon, mach  is a measure of the accuracy of a floating point representation 

and is found by calculating the difference between 1 and the next number that can be 
represented.  For example, assume a 10-bit hypothetical computer where the first bit is used 
for the sign of the number, the second bit for the sign of the exponent, the next four bits for 
the exponent and the next four for the mantissa. 
We represent 1 as 

0 0 0 0 0 0 0 0 0 0
and the next higher number that can be represented is  

0 0 0 0 0 0 0 0 0 1
The difference between the two numbers is  

    22 )0000(
2

)0000(
2 20000.120001.1   

 20001.0  

10
4 )21(    

10)0625.0( .   

The machine epsilon is  
0625.0mach .   

The machine epsilon, mach is also simply calculated as two to the negative power of the 

number of bits used for mantissa.  As far as determining accuracy, machine epsilon, mach  is 

an upper bound of the magnitude of relative error that is created by the approximate 
representation of a number (See Example 4).   
 
Example 4 

A machine stores floating-point numbers in a hypothetical 10-bit binary word.  It employs 
the first bit for the sign of the number, the second one for the sign of the exponent, the next 
four for the exponent, and the last four for the magnitude of the mantissa.  Confirm that the 
magnitude of the relative true error that results from approximate representation of 0.02832 
in the 10-bit format (as found in previous example) is less than the machine epsilon.  
Solution 

From Example 2, the ten-bit representation of 0.02832 bit-by-bit is 
0 1 0 1 1 0 1 1 0 0

Again from Example 2, converting the above floating point representation to base-10 gives 

   20110
2 21100.1   

   106
10 275.1   

 1002734375.0  

The absolute relative true error between the number 0.02832 and its approximate 
representation 0.02734375 is 

02832.0

02734375.002832.0 
t  

      034472.0  
which is less than the machine epsilon for a computer that uses 4 bits for mantissa, that is, 
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0625.0

2 4


 

mach
. 

Q: How are numbers actually represented in floating point in a real computer? 
A: In an actual typical computer, a real number is stored as per the IEEE-754 (Institute of 
Electrical and Electronics Engineers) floating-point arithmetic format.  To keep the 
discussion short and simple, let us point out the salient features of the single precision 
format. 
 A single precision number uses 32 bits.   
 A number y is represented as 

  eaaay 2.1 2321    

where 
 = sign of the number (positive or negative) 

23,..,1 1,or  0only  becan  mantissa,  theof entries  iai  

e =the exponent 
 Note the 1 before the radix point. 
 The first bit represents the sign of the number (0 for positive number and 1 for a 

negative number).   
 The next eight bits represent the exponent.  Note that there is no separate bit for the 

sign of the exponent.  The sign of the exponent is taken care of by normalizing by 
adding 127 to the actual exponent.  For example in the previous example, the 
exponent was 6.  It would be stored as the binary equivalent of 1336127  .  Why 
is 127 and not some other number added to the actual exponent?  Because in eight 
bits the largest integer that can be represented is   25511111111 2  , and halfway of 

255 is 127.  This allows negative and positive exponents to be represented equally.  
The normalized (also called biased) exponent has the range from 0 to 255, and hence 
the exponent e has the range of 128127  e .   

 If instead of using the biased exponent, let us suppose we still used eight bits for the 
exponent but used one bit for the sign of the exponent and seven bits for the exponent 
magnitude.  In seven bits, the largest integer that can be represented is 
  1271111111 2   in which case the exponent e  range would have been smaller, that 

is, 127127  e .  By biasing the exponent, the unnecessary representation of a 
negative zero and positive zero exponent (which are the same) is also avoided.   

 Actually, the biased exponent range used in the IEEE-754 format is not 0 to 255, but 
1 to 254.  Hence, exponent e  has the range of 127126  e .  So what are 

127e  and 128e  used for?  If 128e  and all the mantissa entries are zeros, the 
number is   ( the sign of infinity is governed by the sign bit), if 128e  and the 
mantissa entries are not zero, the number being represented is Not a Number (NaN).  
Because of the leading 1 in the floating point representation, the number zero cannot 
be represented exactly.  That is why the number zero (0) is represented by 127e  
and all the mantissa entries being zero.   

 The next twenty-three bits are used for the mantissa. 
 The largest number by magnitude that is represented by this format is 

    1272322210 22121212121    381040.3   
  The smallest number by magnitude that is represented, other than zero, is 
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    1262322210 22020202021    381018.1   
 Since 23 bits are used for the mantissa, the machine epsilon, 

   
7

23

1019.1

2






mach . 

 
Q: How are numbers represented in floating point in double precision in a computer? 
A: In double precision IEEE-754 format, a real number is stored in 64 bits.   
 The first bit is used for the sign,  
 the next 11 bits are used for the exponent, and  
 the rest of the bits, that is 52, are used for mantissa.   

Can you find in double precision the  
 range of the biased exponent, 
 smallest number that can be represented,  
 largest number that can be represented, and 
 machine epsilon? 
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Chapter 01.06 
Propagation of Errors 
 
 
 
 
 
If a calculation is made with numbers that are not exact, then the calculation itself will have 
an error.  How do the errors in each individual number propagate through the calculations. 
Let’s look at the concept via some examples. 
 
Example 1 
Find the bounds for the propagation error in adding two numbers. For example if one is 
calculating YX + where  

05.05.1 ±=X ,  
04.04.3 ±=Y  . 

Solution 
By looking at the numbers, the maximum possible value of X and Y are 

55.1=X  and 44.3=Y  
Hence 

99.444.355.1 =+=+YX   
is the maximum value of YX + . 
The minimum possible value of X and Y are 

45.1=X  and 36.3=Y .  
Hence  

36.345.1 +=+YX  
            81.4=  
is the minimum value of YX + .  
Hence 

.99.481.4 ≤+≤ YX  
 
One can find similar intervals of the bound for the other arithmetic operations of 

YXYXYX /and,*,− .  What if the evaluations we are making are function evaluations 
instead?  How do we find the value of the propagation error in such cases.  
 If  f  is a function of several variables nn XXXXX ,,.......,,, 1321 − , then the maximum 
possible value of the error in f  is 

n
n

n
n

X
X
fX

X
fX

X
fX

X
ff ∆

∂
∂

+∆
∂
∂

++∆
∂
∂

+∆
∂
∂

≈∆ −
−

1
1

2
2

1
1

.......  

01.06.1 
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Example 2  
The strain in an axial member of a square cross-section is given by 

Eh
F
2∈=  

where  
F =axial force in the member, N 
h = length or width of the cross-section, m 
E =Young’s modulus, Pa 

Given 
N9.072 ±=F  

mm1.04 ±=h  
GPa5.170 ±=E  

Find the maximum possible error in the measured strain. 
Solution 

)1070()104(
72

923 ××
∈= −

 

   610286.64 −×=  
   µ286.64=  

E
E

h
h

F
F

∆
∂
∈∂

+∆
∂
∈∂

+∆
∂
∈∂

∈=∆  

EhF 2

1
=

∂
∈∂  

Eh
F

h 3

2
−=

∂
∈∂  

22 Eh
F

E
−=

∂
∈∂  

E
Eh

Fh
Eh
FF

Eh
∆+∆+∆=∆ 2232

21ε  

      
9

2923

933923

105.1
)1070()104(

72

0001.0
)1070()104(

7229.0
)1070()104(

1

××
××

+

×
××

×
+×

××
=

−

−−

 

                 667 103776.1102143.3100357.8 −−− ×+×+×=  
                 6103955.5 −×=  
      µ3955.5=  
Hence 

)3955.5286.64( µµ ±∈=  
implying that the axial strain, ∈ is between  µ8905.58  and µ6815.69  
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Example 3  
Subtraction of numbers that are nearly equal can create unwanted inaccuracies.  Using the 
formula for error propagation, show that this is true. 
Solution 
Let 

yxz −=  
Then 

y
y
zx

x
zz ∆

∂
∂

+∆
∂
∂

=∆  

    yx ∆−+∆= )1()1(  

   yx ∆+∆=  
So the absolute relative change is 

yx
yx

z
z

−

∆+∆
=

∆  

As x  and y  become close to each other, the denominator becomes small and hence create 
large relative errors. 
For example if 

001.02 ±=x  
001.0003.2 ±=y  

|003.22|
001.0001.0

−

+
=

∆
z
z  

        = 0.6667 
        = 66.67% 
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Chapter 01.07 
Taylor Theorem Revisited 
 
 
 
 
 
After reading this chapter, you should be able to 
 

1. understand the basics of Taylor’s theorem, 
2. write transcendental and trigonometric functions as Taylor’s polynomial, 
3. use Taylor’s theorem to find the values of a function at any point, given the values of 

the function and all its derivatives at a particular point, 
4. calculate errors and error bounds of approximating a function by Taylor series, and 
5. revisit the chapter whenever Taylor’s theorem is used to derive or explain numerical 

methods for various mathematical procedures. 
 
The use of Taylor series exists in so many aspects of numerical methods that it is imperative 
to devote a separate chapter to its review and applications.  For example, you must have 
come across expressions such as 

+−+−=
!6!4!2

1)cos(
642 xxxx                               (1) 

+−+−=
!7!5!3

)sin(
753 xxxxx                               (2) 

++++=
!3!2

1
32 xxxex                                (3) 

All the above expressions are actually a special case of Taylor series called the Maclaurin 
series.  Why are these applications of Taylor’s theorem important for numerical methods?  
Expressions such as given in Equations (1), (2) and (3) give you a way to find the 
approximate values of these functions by using the basic arithmetic operations of addition, 
subtraction, division, and multiplication.   
 
Example 1 

Find the value of 25.0e  using the first five terms of the Maclaurin series. 
Solution 

The first five terms of the Maclaurin series for xe is 

!4!3!2
1

432 xxxxex ++++≈  

01.07.1 
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!4
25.0

!3
25.0

!2
25.025.01

432
25.0 ++++≈e  

                   2840.1=  
The exact value of 25.0e  up to 5 significant digits is also 1.2840.   
But the above discussion and example do not answer our question of what a Taylor series is.   
Here it is, for a function ( )xf  

( ) ( ) ( ) ( ) ( )
+

′′′
+

′′
+′+=+ 32

!3!2
hxfhxfhxfxfhxf                  (4) 

provided all derivatives of ( )xf  exist and are continuous between x  and hx + .   
 
What does this mean in plain English?   
As Archimedes would have said (without the fine print), “Give me the value of the function at 
a single point, and the value of all (first, second, and so on) its derivatives, and I can give 
you the value of the function at any other point”.   
            It is very important to note that the Taylor series is not asking for the expression of 
the function and its derivatives, just the value of the function and its derivatives at a single 
point.   
           Now the fine print:  Yes, all the derivatives have to exist and be continuous between x  
(the point where you are) to the point, hx +  where you are wanting to calculate the function 
at.  However, if you want to calculate the function approximately by using the thn  order 
Taylor polynomial, then thndst n,....,2,1 derivatives need to exist and be continuous in the 
closed interval ],[ hxx + , while the thn )1( +  derivative needs to exist and be continuous in 
the open interval ),( hxx + . 
 
Example 2 

Take ( ) ( )xxf sin= , we all know the value of 1
2

sin =





π .  We also know the ( ) ( )xxf cos=′  

and 0
2

cos =





π .  Similarly ( ) )sin(xxf −=′′  and 1

2
sin =






π .  In a way, we know the value 

of ( )xsin  and all its derivatives at 
2
π

=x .  We do not need to use any calculators, just plain 

differential calculus and trigonometry would do.  Can you use Taylor series and this 
information to find the value of ( )2sin ? 
Solution 

2
π

=x  

2=+ hx  
xh −= 2  

2
2 π
−=  

42920.0=  
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So 

( ) ( ) ( ) ( ) ( ) +′′′′+′′′+′′+′+=+
!4

)(
!3!2

432 hxfhxfhxfhxfxfhxf  

2
π

=x  

42920.0=h  

( ) ( )xxf sin= , 





=








2
sin

2
ππf 1=  

( ) ( )xxf cos=′ , 0
2

=





′ πf  

( ) ( )xxf sin−=′′ , 1
2

−=





′′ πf  

( ) )cos(xxf −=′′′ , 0
2

=





′′′ πf  

( ) )sin(xxf =′′′′ , 1
2

=





′′′′ πf  

Hence 

+





′′′′+






′′′+






′′+






′+






=






 +

!42!32!22222

432 hfhfhfhffhf ππππππ  

( ) ( ) ( ) ( )
+++−+=






 +

!4
42920.01

!3
42920.00

!2
42920.0142920.00142920.0

2

432πf  

       +++−+= 00141393.00092106.001  
       90931.0≅  
The value of ( )2sin  I get from my calculator is 90930.0 which is very close to the value I just 
obtained.  Now you can get a better value by using more terms of the series.  In addition, you 
can now use the value calculated for ( )2sin  coupled with the value of ( )2cos  (which can be 
calculated by Taylor series just like this example or by using the 1cossin 22 ≡+ xx  identity) 
to find value of ( )xsin  at some other point.  In this way, we can find the value of ( )xsin  for 
any value from 0=x  to π2  and then can use the periodicity of ( )xsin , that is 

( ) ( ) ,2,1,2sinsin =+= nnxx π  to calculate the value of ( )xsin   at any other point. 
 
Example 3 

Derive the Maclaurin series of ( ) +−+−=
!7!5!3

sin
753 xxxxx  

Solution 

In the previous example, we wrote the Taylor series for ( )xsin  around the point 
2
π

=x .  

Maclaurin series is simply a Taylor series for the point 0=x . 
( ) ( )xxf sin= , ( ) 00 =f  
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( ) ( )xxf cos=′ , ( ) 10 =′f  
( ) ( )xxf sin−=′′ , ( ) 00 =′′f  
( ) ( )xxf cos−=′′′ , ( ) 10 −=′′′f  
( ) ( )xxf sin=′′′′ , ( ) 00 =′′′′f  
( ) )cos(xxf =′′′′′ , ( ) 10 =′′′′′f  

  
Using the Taylor series now, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) +′′′′′+′′′′+′′′+′′+′+=+
54!3!2

5432 hxfhxfhxfhxfhxfxfhxf  

( ) ( ) ( ) ( ) ( ) ( ) ( ) +′′′′′+′′′′+′′′+′′+′+=+
5

0
4

0
!3

0
!2

0000
5432 hfhfhfhfhffhf  

( ) ( ) ( ) ( ) ( ) ( ) ( ) +′′′′′+′′′′+′′′+′′+′+=
5

0
4

0
!3

0
!2

000
5432 hfhfhfhfhffhf  

        ( ) +++−−+=
5

1
4

0
!3

1
!2

010
5432 hhhhh  

        ++−=
!5!3

53 hhh  

So 

( ) −+−=
!5!3

53 xxxxf  

( ) −+−=
!5!3

sin
53 xxxx  

 
Example 4 

Find the value of ( )6f  given that ( ) 1254 =f , ( ) 744 =′f , ( ) 304 =′′f , ( ) 64 =′′′f  and all 
other higher derivatives of ( )xf  at 4=x  are zero. 
Solution 

( ) ( ) ( ) ( ) ( ) +′′′+′′+′+=+
!3!2

32 hxfhxfhxfxfhxf  

4=x  
46 −=h  

     2=  
Since fourth and higher derivatives of ( )xf  are zero at 4=x . 

( ) ( ) ( ) ( ) ( )
!3

24
!2

2424424
32

fffff ′′′+′′+′+=+  

( ) ( ) 







+








++=

!3
26

!2
2302741256

32

f  

        860148125 +++=  
        341=  
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Note that to find ( )6f  exactly, we only needed the value of the function and all its 
derivatives at some other point, in this case, 4=x .  We did not need the expression for the 
function and all its derivatives.  Taylor series application would be redundant if we needed to 
know the expression for the function, as we could just substitute 6=x  in it to get the value 
of ( )6f . 
             Actually the problem posed above was obtained from a known function 
( ) 523 23 +++= xxxxf  where ( ) 1254 =f , ( ) 744 =′f , ( ) 304 =′′f , ( ) 64 =′′′f , and all other 

higher derivatives are zero. 
 
Error in Taylor Series 
As you have noticed, the Taylor series has infinite terms.  Only in special cases such as a 
finite polynomial does it have a finite number of terms.  So whenever you are using a Taylor 
series to calculate the value of a function, it is being calculated approximately.   
 
The Taylor polynomial of order n  of a function )(xf  with )1( +n  continuous derivatives in 
the domain ],[ hxx +  is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )hxR
n
hxfhxfhxfxfhxf n

n
n +++++′+=+

!!2
''

2

  

where the remainder is given by 

( ) ( ) ( ) ( )cf
n
hhxR n

n

n
1

1

)!1(
+

+

+
=+ . 

where 
hxcx +<<  

that is, c  is some point in the domain ( )hxx +, . 
 
Example 5 

The Taylor series for xe at point 0=x  is given by 

++++++=
!5!4!3!2

1
5432 xxxxxe x  

a) What is the truncation (true) error in the representation of 1e  if only four terms of the 
series are used?   
b) Use the remainder theorem to find the bounds of the truncation error. 
Solution 

a) If only four terms of the series are used, then 

!3!2
1

32 xxxe x +++≈  

!3
1

!2
111

32
1 +++≈e  

      66667.2=  
The truncation (true) error would be the unused terms of the Taylor series, which then are 
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++=
!5!4

54 xxEt  

      ++=
!5

1
!4

1 54

 

      0516152.0≅  
b) But is there any way to know the bounds of this error other than calculating it 

directly?  Yes,  

( ) ( ) ( ) ( ) ( ) ( )hxR
n
hxfhxfxfhxf n

n
n ++++′+=+

!
  

where 

( ) ( )
( )

( ) ( )cf
n
hhxR n

n

n
1

1

!1
+

+

+
=+ , hxcx +<< , and  

c  is some point in the domain ( )hxx +, .  So in this case, if we are using four terms of the 
Taylor series, the remainder is given by ( )3,0 == nx  

( ) ( )
( )

( ) ( )cfR 13
13

3 !13
110 +

+

+
=+  

          ( ) ( )cf 4

!4
1

=  

          
24

ce
=  

Since  
hxcx +<<  
100 +<< c  

10 << c  
The error is bound between 

( )
24

1
24

1

3

0 eRe
<<  

( )
24

1
24
1

3
eR <<  

( ) 113261.01041667.0 3 << R  
So the bound of the error is less than 113261.0  which does concur with the calculated error 
of 0516152.0 .  
 
Example 6 

The Taylor series for xe at point 0=x  is given by 

++++++=
!5!4!3!2

1
5432 xxxxxe x  

As you can see in the previous example that by taking more terms, the error bounds decrease 
and hence you have a better estimate of 1e .  How many terms it would require to get an 
approximation of 1e  within a magnitude of true error of less than 610− ? 
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Solution 

Using ( )1+n  terms of the Taylor series gives an error bound of  

( ) ( )
( )

( ) ( )cf
n
hhxR n

n

n
1

1

!1
+

+

+
=+  

xexfhx === )(,1,0  

( ) ( )
( )

( ) ( )cf
n

R n
n

n
1

1

!1
11 +

+

+
=  

          ( )
( )

c
n

e
n !1
1 1

+
=

+

 

Since  
hxcx +<<  
100 +<< c  

10 << c  

( )
)!1(

1
)!1(

1
+

<<
+ n

eR
n n  

So if we want to find out how many terms it would require to get an approximation of 1e  
within a magnitude of true error of less than 610− , 

610
)!1(

−<
+n
e  

en 610)!1( >+  
310)!1( 6 ×>+n   (as we do not know the value of e but it is less than 3). 

9≥n  
So 9 terms or more will get 1e  within an error of 610−  in its value.   
 
 We can do calculations such as the ones given above only for simple functions.  To 
do a similar analysis of how many terms of the series are needed for a specified accuracy for 
any general function, we can do that based on the concept of absolute relative approximate 
errors discussed in Chapter 01.02 as follows. 
 We use the concept of absolute relative approximate error (see Chapter 01.02 for 
details), which is calculated after each term in the series is added.  The maximum value of 
m , for which the absolute relative approximate error is less than m−× 2105.0 % is the least 
number of significant digits correct in the answer.  It establishes the accuracy of the 
approximate value of a function without the knowledge of remainder of Taylor series or the 
true error. 
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Chapter 02.01 
Primer on Differentiation 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. understand the basics of differentiation, 
2. relate the slopes of the secant line and tangent line to the derivative of a function, 
3. find derivatives of polynomial, trigonometric and transcendental functions, 
4. use rules of differentiation to differentiate functions, 
5. find maxima and minima of a function, and 
6. apply concepts of differentiation to real world problems. 

  
 In this primer, we will review the concepts of differentiation you learned in calculus.  
Mostly those concepts are reviewed that are applicable in learning about numerical methods.  
These include the concepts of the secant line to learn about numerical differentiation of 
functions, the slope of a tangent line as a background to solving nonlinear equations using the 
Newton-Raphson method, finding maxima and minima of functions as a means of 
optimization, the use of the Taylor series to approximate functions, etc. 
  
Introduction 
 The derivative of a function represents the rate of change of a variable with respect to 
another variable.  For example, the velocity of a body is defined as the rate of change of the 
location of the body with respect to time.  The location is the dependent variable while time 
is the independent variable.  Now if we measure the rate of change of velocity with respect to 
time, we get the acceleration of the body.  In this case, the velocity is the dependent variable 
while time is the independent variable.  
 Whenever differentiation is introduced to a student, two concepts of the secant line 
and tangent line (Figure 1) are revisited. 
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Let P  and Q  be two points on the curve as shown in Figure 1.  The secant line is the straight 
line drawn through P  and Q .   

 
 
The slope of the secant line (Figure 2) is then given as 

 
aha

afhafmPQ −+
−+

=
)(

)()(
secant,  

x 

P 

Q 

a a+h 

)(xf  

Figure 2  Calculation of the secant line. 

Q 

P 

f(x) 

x  

secant line 

tangent 
line 

Figure 1  Function curve with tangent and secant lines. 
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h

afhaf )()( −+
=  

As Q  moves closer and closer to P , the limiting portion is called the tangent line.  The slope 
of the tangent line tangent,PQm  then is the limiting value of secant,PQm  as 0→h . 

 
h

afhafm
hPQ

)()(lim
0tangent,

−+
=

→
 

 
Example 1 

Find the slope of the secant line of the curve 24xy =  between points (3,36) and (5,100).  
 

0

50

100

150

200

250

-2 -1 0 1 2 3 4 5 6 7 8

x

f(x
)

(5,100)

(3,36)

 
Figure 3  Calculation of the secant line for the function 24xy = . 

Solution 
The slope of the secant line between (3,36) and (5,100) is 

 
35

)3()5(
−
−

=
ffm  

    
35
36100

−
−

=  

     32=  
 
Example 2 

Find the slope of the tangent line of the curve 24xy =  at point (3,36). 
Solution 
The slope of the tangent line at (3,36) is 
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h

fhfm
h

)3()3(lim
0

−+
=

→
 

     
h

h
h

22

0

)3(4)3(4lim −+
=

→
 

     
h

hh
h

36)69(4lim
2

0

−++
=

→
 

     
h

hh
h

3624436lim
2

0

−++
=

→
 

     
h

hh
h

)244(lim
0

+
=

→
 

     )244(lim
0

+=
→

h
h

 

     24=  

0

10

20
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40

50

60

70

-2 -1 0 1 2 3 4 5

x

f(
x)

 
Figure 4  Calculation of the tangent line in the function 24xy = . 

 
The slope of the tangent line is 

 h
fhfm

h

)3()3(lim
0

−+
=

→  

    h
h

h

22

0

)3(4)3(4lim −+
=

→  

    h
hh

h

3642436lim
2

0

−++
=

→  
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    h
hh

h

)424(lim
0

+
=

→  

    
)424(lim

0
h

h
+=

→  
    24=  
 
Derivative of a Function 

Recall from calculus, the derivative of a function )(xf  at ax =  is defined as 

 
h

afhafaf
h

)()(lim)(
0

−+
=′

→
 

 
Example 3 

Find )3(f ′  if 24)( xxf = . 
Solution 

 
h

fhff
h

)3()3(lim)3(
0

−+
=′

→
 

         
h

h
h

22

0

)3(4)3(4lim −+
=

→
 

          
h

hh
h

36)69(4lim
2

0

−++
=

→
 

         
h

hh
h

3624436lim
2

0

−++
=

→
 

         
h

hh
h

)244(lim
0

+
=

→
 

         )244(lim
0

+=
→

h
h

 

         24=  
 
Example 4 

Find 





′

4
πf  if )2()( xsinxf =  

Solution 

h

fhf
f

h







−






 +

=





′

→

44lim
4 0

ππ
π  

          
h

sinhsin

h















−














 +

=
→

4
2

4
2

lim
0

ππ
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h

sinhsin

h







−






 +

=
→

2
2

2lim
0

ππ

 

            
h

sinhsincoshcossin

h







−






+








=
→

2
)2(

2
)2(

2lim
0

πππ

 

            
h

hcos
h

10)2(lim
0

−+
=

→
 

            
h
hcos

h

1)2(lim
0

−
=

→
 

            0=  
from knowing that  

 0)(1lim
0

=
−

→ h
hcos

h
 

 
Second Definition of Derivatives 
There is another form of the definition of the derivative of a function.  The derivative of the 
function )(xf  at ax =  is defined as 

 
ax

afxfaf
ax −

−
=′

→

)()(lim)(  

As ax → , the definition is nothing but the slope of the tangent line at P . 

 
 
Example 5   

Find )3(f ′  if 24)( xxf =  by using the form  

)(xf  

P 

Q 
))(,( afa  

a 

))(,( xfx  

ax −  

)()( afxf −  

x 

   Figure 5 Graph showing the second definition of the derivative. 

x 
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ax

afxfaf
ax −

−
=′

→

)()(lim)(  

of the definition of a derivative. 
Solution 

   
3

)3()(lim)3(
3 −

−
=′

→ x
fxff

x
 

  
3

)3(44lim
22

3 −
−

=
→ x

x
x

 

  
3
364lim

2

3 −
−

=
→ x

x
x

 

  
3

)9(4lim
2

3 −
−

=
→ x

x
x

 

  
3

)3)(3(4lim
3 −

+−
=

→ x
xx

x
 

  )3(4lim
3

+=
→

x
x

 

  
24

)33(4
=

+=  

 
Finding equations of a tangent line 
One of the numerical methods used to solve a nonlinear equation is called the Newton-
Raphson method.  This method is based on the knowledge of finding the tangent line to a 
curve at a point.  Let us look at an example to illustrate finding the equation of the tangent 
line to a curve. 
 
Example 6 
Find the equation of the line tangent to the function  
 43 10993.3165.0)( −×+−= xxxf  at 05.0=x . 
Solution 
The line tangent is a straight line of the form 
 cmxy +=  
To find the equation of the tangent line, let us first find the slope m  of the straight line. 

 165.03)( 2 −=′ xxf  
 165.0)05.0(3)05.0( 2 −=′f     
                1575.0−=  
 1575.0−=m  
To find the value of the y -intercept c  of the straight line, we first find the value of the 
function at 05.0=x . 
 43 10993.3)05.0(165.0)05.0()05.0( −×+−=f  
   0077257.0−=  
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The tangent line passes through the point )0077257.0,05.0( − , so 

  
c

cm
+−=−

+=−
)05.0(1575.00077257.0

)05.0(0077257.0
 

 0001493.0=c  
 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

f(x
)

 
Figure 6  Graph of function f(x) and the tangent line at x = 0.05. 

 
Hence, 
 cmxy +=  
    0001493.01575.0 +−= x  
is the equation of the tangent line. 
 
Other Notations of Derivatives 
Derivates can be denoted in several ways.  For the first derivative, the notations are  

 
dx
dyandyxf

dx
dxf     ,   ),(   ),( ′′  

For the second derivative, the notations are 

 2

2

2

2

    ,  ),(  ),(
dx

ydandyxf
dx
dxf ′′′′  

For the thn  derivative, the notations are 
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 n

n
n

n

n
n

dx
ydyxf

dx
dxf   ,  ),(  ),( )()(  

 
Theorems of Differentiation 
Several theorems of differentiation are given to show how one can find the derivative of 
different functions. 
 
Theorem 1 

The derivative of a constant is zero.  If kxf =)( , where k  is a constant, 0)( =′ xf . 
 
Example 7 

Find the derivative of 6)( =xf . 
Solution 
 6)( =xf  
 0)( =′ xf  
 
Theorem 2 

The derivative of nxxf =)( , where 0≠n  is 1)( −=′ nnxxf . 
 
Example 8 

Find the derivative of 6)( xxf = . 
Solution 

 6)( xxf =  
 166)( −=′ xxf  
           56x=  
 
Example 9 

Find the derivative of 6)( −= xxf . 
Solution 

 6)( −= xxf  
 166)( −−−=′ xxf  
           76 −−= x  

           7

6
x

−=  

 
Theorem 3 
The derivative of )()( xkgxf = , where k  is a constant is )()( xgkxf ′=′ . 
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Example 10 

Find the derivative of 610)( xxf = . 
Solution 

 610)( xxf =  

 )10()( 6x
dx
dxf =′  

         610 x
dx
d

=  

         )6(10 5x=  
         560x=  
 
Theorem 4 
The derivative of )()()( xvxuxf ±=  is )()()( xvxuxf ′±′=′ . 
 
Example 11 

Find the derivative of 83)( 3 += xxf . 
Solution 

 83)( 3 += xxf  

 
)83()( 3 +=′ x

dx
dxf

 

           
)8()3( 3

dx
dx

dx
d

+=
 

           
0)(3 3 += x

dx
d

 
           )3(3 2x=  
           

29x=  
 
Theorem 5 
The derivative of  
 )()()( xvxuxf =  
 is 

 )()()()()( xu
dx
dxvxv

dx
dxuxf +=′ .  (Product Rule) 

 
Example 12 

Find the derivative of )83)(62()( 32 +−= xxxf  
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Solution  
Using the product rule as given by Theorem 5 where, 
 )()()( xvxuxf =  

 )()()()()( xu
dx
dxvxv

dx
dxuxf +=′  

 )83)(62()( 32 +−= xxxf  
 62)( 2 −= xxu  
 83)( 3 += xxv  
Taking the derivative of )(xu , 

 )62( 2 −= x
dx
d

dx
du  

       )6()2( 2

dx
dx

dx
d

−=    

      0)(2 2 −= x
dx
d  

       )2(2 x=  
       x4=  
Taking the derivative of )(xv , 

 )83( 3 += x
dx
d

dx
dv  

       )8()3( 3

dx
dx

dx
d

+=  

       0)(3 3 += x
dx
d  

       )3(3 2x=  
       29x=  
Using the formula for the product rule 

 )()()()()( xu
dx
dxvxv

dx
dxuxf +=′  

           
xxx

xxxx
xxxx

325430
32125418

)4)(83()9)(62(

24

424

322

+−=

++−=

++−=

 

 
Theorem 6 
The derivative of  

 
)(
)()(

xv
xuxf =   

is 
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2))((

)()()()(
)(

xv

xv
dx
dxuxu

dx
dxv

xf
−

=′  (Quotient Rule) 

 
Example 13 

 Find the derivative of 
)83(
)62()( 3

2

+
−

=
x
xxf . 

Solution 
Use the quotient rule of Theorem 6, if  

 
)(
)()(

xv
xuxf =  

then 

 2))((

)()()()(
)(

xv

xv
dx
dxuxu

dx
dxv

xf
−

=′  

From 

 
)83(
)62()( 3

2

+
−

=
x
xxf  

we have 
 62)( 2 −= xxu  
 83)( 3 += xxv  
Taking the derivative of )(xu , 

 )62( 2 −= x
dx
d

dx
du  

       )6()2( 2

dx
dx

dx
d

−=  

       
)2(2

0)(2 2

x

x
dx
d

=

−=
 

       x4=  
Taking the derivative of )(xv , 

 )83( 3 += x
dx
d

dx
dv  

       )8()3( 3

dx
dx

dx
d

+=  

       
)3(3

0)(3

2

3

x

x
dx
d

=

+=
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       29x=  
Using the formula for the quotient rule, 

 23

223

)83(
)9)(62()4)(83()(

+
−−+

=′
x

xxxxxf  

         
64489

54183212
36

244

++
+−+

=
xx

xxxx  

                
64489
32546

36

24

++
++−

=
xx

xxx  

          
Table of Derivatives 

)(xf  )(xf ′  

0, ≠nxn
 

1−nnx  
nkx , 0≠n  1−nknx  

)(xsin  )(xcos  

)(xcos  )(xsin−  

)(xtan  )(2 xsec  
)(xsinh  )(xcosh  

)(xcosh  )(xsinh  

)(xtanh  )(1 2 xtanh−  

)(1 xsin−
 21

1
x−  

)(1 xcos −
 21

1
x−

−

 

)(1 xtan−
 21

1
x+  

)(xcsc  )()( xcotxcsc−  

)(xsec  )()( xtanxsec  

)(xcot  )(2 xcsc−  
)(xcsch  )()( xcschxcoth−  

)(xsech  )()( xsechxtanh−  
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)(xcoth  )(1 2 xcoth−  

)(1 xcsc−
 1

||
22 −

−
xx
x  

)(1 xsec−
 1

||
22 −xx

x  

)(1 xcot −  21
1
x+

−

 
xa  

xaaln )(  

)(xln  x
1

 

)(xloga  )(
1

axln  
xe  

xe  
 
Chain Rule of Differentiation 
Sometimes functions that need to be differentiated do not fall in the form of simple functions 
or the forms described previously.  Such functions can be differentiated using the chain rule 
if they are of the form ))(( xgf .  The chain rule states 

 )())(())((( xgxgfxgf
dx
d ′′=  

For example, to find )(xf ′  of 42 )23()( xxxf −= , one could use the chain rule. 
 )23()( 2 xxxg −=  
          26)( −=′ xxg  
 3))((4))(( xgxgf =′  

            )26()23(4))23(( 3242 −−=− xxxxx
dx
d  

 
Implicit Differentiation 
Sometimes, the function to be differentiated is not given explicitly as an expression of the 
independent variable.  In such cases, how do we find the derivatives?  We will discuss this 
via examples. 
 
Example 14 

Find 
dx
dy  if xyyx 222 =+  
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Solution 

 xyyx 222 =+  

)2()( 22 xy
dx
dyx

dx
d

=+  

)2()()( 22 xy
dx
dy

dx
dx

dx
d

=+  

y
dx
dyx

dx
dyyx 2222 +=+  

xy
dx
dyxy

xy
dx
dyx

dx
dyy

22)22(

2222

−=−

−=−
 

1

22
22

=

−
−

=

dx
dy

xy
xy

dx
dy

  

Example 15 

If 522 =+− yxyx , find the value of y′ . 
Solution 

 522 =+− yxyx  

 
)5()( 22

dx
dyxyx

dx
d

=+−
 

 
0)()()( 22 =+− y

dx
dxy

dx
dx

dx
d

 

 
022 =+−−

dx
dyyy

dx
dyxx

 

 
yx

dx
dyyx +−=+− 2)2(

 

 xy
xy

dx
dy

−
−

=
2

2

 

 xy
xyy

−
−

=′
2

2

 
 
Higher order derivatives 

So far, we have limited our discussion to calculating first derivative, )(xf ′  of a function 
)(xf .  What if we are asked to calculate higher order derivatives of )(xf .   

A simple example of this is finding acceleration of a body from a function that gives the 
location of the body as a function of time.  The derivative of the location with respect to time 
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is the velocity of the body, followed by the derivative of velocity with respect to time being 
the acceleration.  Hence, the second derivative of the location function gives the acceleration 
function of the body. 
   
Example 16 

Given 723)( 3 −−= xxxf , find the second derivative, )(xf ′′  and the third derivative, )(xf ′′′ . 
Solution 
Given  
 723)( 3 −−= xxxf  
we have 
 2)3(3)( 2 −=′ xxf  
           29 2 −= x  

 ))(()( xf
dx
dxf ′=′′  

           
x
x

x
dx
d

18
)2(9

)29( 2

=
=

−=

 

 ))(()( xf
dx
dxf ′′=′′′  

           
18

)18(

=

= x
dx
d

 

 
Example 17 

If 522 =+− yxyx , find the value of y ′′ . 
Solution 
From Example 15 we obtain 

 
xy
xyy

−
−

=′
2

2 , 

 xyyxy 2)2( −=′−   

 )2())2(( xy
dx
dyxy

dx
d

−=′−  

 )2()()2()()2( x
dx
dy

dx
dxy

dx
dyy

dx
dxy −=−′+′−  

 2)12()2( −′=−′′+−′′ yyyxyy  

 
xy

yyy
−

′−−′
=′′

2
222 2
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After substitution of y′ , 

 
xy

xy
xy

xy
xy

y
−









−
−

−−
−
−

=′′
2

2
222

2
22

2

 

      3

22

)2(
)(6

xy
xxyy

−
+−

−=  

Finding maximum and minimum of a function 
 The knowledge of first derivative and second derivative of a function is used to find 
the minimum and maximum of a function.  First, let us define what the maximum and 
minimum of a function are.  Let )(xf  be a function in domain D , then 

)(af  is the maximum of the function if )()( xfaf ≥  for all values of x  in the domain D . 
)(af  is the minimum of the function if )()( xfaf ≤  for all values of x  in the domain D . 

The minimum and maximum of a function are also the critical values of a function. 
An extreme value can occur in the interval ],[ dc  at 
end points dxcx == , . 
a point in ],[ dc  where 0)( =′ xf . 
a point in ],[ dc  where )(xf ′  does not exist. 
These critical points can be the local maximas and minimas of the function (See Figure 8). 
 
Example 18  

Find the minimum and maximum value of 52)( 2 −−= xxxf  in the interval ]5,0[ . 
 

 

maximum 

minimum 

 

x 
  Figure 7 Graph illustrating the concepts of maximum and minimum. 

Domain = [c,d] 

c d 
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Solution 

52)( 2 −−= xxxf  
 22)( −=′ xxf  
 0)( =′ xf  at 1=x . 

)(xf ′  exists everywhere in ]5,0[ . 
So the critical points are 5,1,0 === xxx . 
 5)0(2)0()0( 2 −−=f  5−=  
 5)1(2)1()1( 2 −−=f  6−=  
 5)5(2)5()5( 2 −−=f  10=  
Hence, the minimum value of )(xf  occurs at 1=x , and the maximum value occurs at 5=x . 

f(x) 

● 
 

● 
 

● 
 

● 
 

● 
 

● 
 

● 
 

x 

    Figure 8 The plot shows critical points of )(xf in ],[ dc  . 

Absolute Minimum 

Local Minimum 

Local 
Minimum 

Local Maximum  
(f´′(x) does not exist) 

Absolute Maximum 

Local Maximum 

c d 
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Figure 10 shows an example of a function that has no minimum or maximum value in the 
domain ),0( ∞ . 

 
Figure 11 shows the maximum of the function occurring at a singular point.  The function 

)(xf  has a sharp corner at ax = . 
 

x 

xxf /1)( =  

)(xf  

 

      Figure 10 Function that has no maximum or minimum. 
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minimum 

maximum 

   Figure 9 Maximum and minimum values of 52)( 2 −−= xxxf  over interval [0,5]. 
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Example 19 

Find the maximum and minimum of xxf 2)( =  in the interval ]5,0[ . 
Solution 
 xxf 2)( =  
 2)( =′ xf  

0)( ≠′ xf  on ]5,0[ . 
So the critical points are 0=x  and 5=x . 
 xxf 2)( =  

 
10)5(2)5(
0)0(2)0(

==
==

f
f

 

So the minimum value of xxf 2)( =  is at 0=x , and the maximum value is at 5=x . 
 The point(s) where the second derivative of a function becomes zero is a way to know 
whether the critical point found in the first derivative test is a local minimum or maximum.  
Let )(xf  be a function in the interval ),( dc  and 0)( =af .  

)(af  is a local maximum of the function if 0)( <′′ af . 
)(af  is a local minimum of the function if 0)( >′′ af . 

If 0)( =′′ af , then the second derivative does not offer any insight into the local maxima or 
minima. 
 
Example 20 

Remember Example 18 where we found 0)(' =xf at 1=x  for 52)( 2 −−= xxxf  in the 
interval ]5,0[ .  Is 1=x  a local maxima or minima of the function? 

)(xf  

x 

)(af   

ax =  

Figure 11 Graph demonstrates the concept of a singular point with 
discontinuous slope at ax =  
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Solution 

 52)( 2 −−= xxxf  
 22)( −=′ xxf  
 0)( =′ xf  at 1=x  

 
02)1(

2)(
>=′′

=′′

f
xf

 

So the )1(f  is the local minimum of the function. 
 
Applications of Derivatives 
Below are some examples to show real-life applications of differentiation. 
 
Example 21 
 A rain gutter cross-section is shown below. 

 
  
What angle of θ  would make the cross-sectional area of ABCD maximum?  Note that 
common sense or intuition may lead us to believe that 4/πθ =  would maximize the cross-
sectional area of ABCD.  Question your intuition. 
 
Solution 

 CEADBCArea ×+= )(
2
1  

  )(θsinCDCE =  
         )(3 θsin=  
             3=BC  
  )()cos( θθ cosABCDBCAD ++=  
  )(3)(33 θθ coscosAD ++=  
  )(63 θcosAD +=  

 ))(3))((633(
2
1 θθ sincosArea ++=  

A 

θ  
3 

B C 

D E 

θ  
3 

3 

           Figure 12 Gutter dimensions for Example 21. 
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          )()(9)(9 θθθ cossinsin +=  

          )2(
2
9)(9 θθ sinsin +=  

   )2(2
2
9)(9 θθ

θ
coscos

d
dA

×+=  

        )2(9)(9 θθ coscos +=  
When is  

0=
θd

dA ? 

  0)2(9)(9 =+ θθ coscos  

  
3
πθ =  

The angle at which the area is maximum is °= 60θ . 

 













+






=








3
2

2
9

3
9

3
πππ sinsinArea  

      

3
4

27

2
3

2
9

2
39

=









+








=

 

For the interval of ],0[ πθ = , the area at the end points is 

 
0)(
0)0(

=
=

πArea
Area

 

 
Example 22 
A classic example of the application of differentiation is to find the dimensions of a circular 
cylinder for a specific volume but which uses the least amount of material.  Do this classic 
problem for a volume of 39m . 
Solution 
The total surface area, A  of the cylinder is 
 A  = top surface + side surface + bottom surface 
      22 2 rrhr πππ ++=  
      rhr ππ 22 2 +=  
The volume, V  of the cylinder is  
 hrV 2π=  
since 
 39mV = . 
We can write 
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2

2

9
9

r
h

hr

π

π

=

=
 

This gives the surface area just in terms of r  as 

 





+= 2

2 922
r

rrA
π

ππ  

      
12

2

182

182

−+=

+=

rr
r

r

π

π  

 

 
To find the minimum, take the first derivative of A  with respect to r  as 

 2)1(184 −−+= rr
dr
dA π  

       2

184
r

r −= π  

Solving for  

 0=
dr
dA , 

 
0184

0184

3

2

=−

=−

r
r

r

π

π  

 
π4

183 =r  

                 Figure 13 Cylinder drawing for Example 20. 
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h 
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m12725.1
4
18 3

1

=







=
π

r  

Since  

 2

9
r

h
π

= , 

 2)12725.1(
9

π
=h  

    m25450.2=  
But does this value of r  correspond to a minimum? 

 3
2

2

)2(184 −−−= r
dr

Ad π  

          

5025.44
12725.1
364

364 3

=

+=

+=

π

π
r

 

This value 02

2

>
dr

Ad  for m12725.1=r .  As per the second derivative test, m12725.1=r  

corresponds to a minimum. 
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Chapter 02.02 
Differentiation of Continuous Functions 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. derive formulas for approximating the first derivative of a function, 
2. derive formulas for approximating derivatives from Taylor series, 
3. derive finite difference approximations for higher order derivatives, and 
4. use the developed formulas in examples to find derivatives of a function. 

 
The derivative of a function at x  is defined as 

 ( ) ( ) ( )
x

xfxxfxf
x ∆

−∆+
=′

→∆ 0
lim  

To be able to find a derivative numerically, one could make x∆  finite to give, 

 ( ) ( ) ( )
x

xfxxfxf
∆

−∆+
≈′ . 

Knowing the value of x  at which you want to find the derivative of ( )xf , we choose a value 
of x∆  to find the value of ( )xf ′ .  To estimate the value of ( )xf ′ , three such approximations 
are suggested as follows. 
 
Forward Difference Approximation of the First Derivative 
From differential calculus, we know 

 ( ) ( ) ( )
x

xfxxfxf
x ∆

−∆+
=′

→∆ 0
lim  

For a finite x∆ , 

 ( ) ( ) ( )
x

xfxxfxf
∆

−∆+
≈′  

The above is the forward divided difference approximation of the first derivative.  It is called 
forward because you are taking a point ahead of x .  To find the value of ( )xf ′  at ixx = , we 
may choose another point x∆  ahead as 1+= ixx .  This gives 

 ( ) ( ) ( )
x

xfxfxf ii
i ∆

−
≈′ +1  
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           ( ) ( )
ii

ii

xx
xfxf

−
−

=
+

+

1

1  

where  
 ii xxx −=∆ +1  

                  
Figure 1  Graphical representation of forward difference approximation of first derivative. 
 

Example 1 
The velocity of a rocket is given by 

 ( ) 300 ,8.9
21001014

1014ln2000 4

4

≤≤−







−×

×
= tt

t
tν  

where ν  is given in m/s and t  is given in seconds.  At s16=t , 
a) use the forward difference approximation of the first derivative of ( )tν  to calculate the 
acceleration.  Use a step size of s2=∆t . 
b) find the exact value of the acceleration of the rocket. 
c) calculate the absolute relative true error for part (b). 
 
Solution 

(a) ( ) ( ) ( )
t

ttta ii
i ∆

−
≈ + νν 1  

 16=it  
 2Δ =t  
 ttt ii Δ1 +=+  
 216+=  
                   =18 

)(xf  

xx ∆+  x  x  
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 ( ) ( ) ( )
2

161816 νν −
≈a  

 ( ) ( ) ( )188.9
1821001014

1014ln200018 4

4

−







−×
×

=ν  

          m/s 02.453=  

 ( ) ( ) ( )168.9
1621001014

1014ln200016 4

4

−







−×
×

=ν  

          m/s 07.392=  
Hence 

 ( ) ( ) ( )
2

161816 νν −
≈a  

             
2

07.39202.453 −
=  

                      2m/s474.30=  
 
(b) The exact value of ( )16a  can be calculated by differentiating 

 ( ) t
t

t 8.9
21001014

1014ln2000 4

4

−







−×

×
=ν  

as 

 ( ) ( )[ ]tν
dt
dta =  

Knowing that 

 ( )[ ]
t

t
dt
d 1ln =  and 2

11
ttdt

d
−=



  

 ( ) 8.9
21001014

1014
1014

210010142000 4

4

4

4

−







−×

×








×
−×

=
tdt

dtta   

        ( ) ( ) ( ) 8.92100
21001014

10141
1014

210010142000 24

4

4

4

−−










−×

×
−








×
−×

=
t

t  

        
t

t
3200

4.294040
+−
−−

=  

 ( ) ( )
( )163200

164.29404016
+−
−−

=a  

          2m/s674.29=  
(c) The absolute relative true error is 

 100
Value True

Value eApproximatValue True
×

−
=∈t  
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         100
674.29

474.30674.29
×

−
=  

                  %6967.2=  
 
Backward Difference Approximation of the First Derivative 
We know 

 ( ) ( ) ( )
x

xfxxfxf
x ∆

−∆+
=′

→∆ 0
lim  

For a finite x∆ , 

 ( ) ( ) ( )
x

xfxxfxf
∆

−∆+
≈′  

If  x∆  is chosen as a negative number, 

 ( ) ( ) ( )
x

xfxxfxf
∆

−∆+
≈′  

          ( ) ( )
x

xxfxf
Δ

Δ−−
=  

This is a backward difference approximation as you are taking a point backward from x .  To 
find the value of ( )xf ′  at ixx = , we may choose another point x∆  behind as 1−= ixx .  This 
gives 

 ( ) ( ) ( )
x

xfxfxf ii
i ∆

−
≈′ −1  

           ( ) ( )
1

1

−

−

−
−

=
ii

ii

xx
xfxf  

where  
 1Δ −−= ii xxx  
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Figure 2  Graphical representation of backward difference approximation of first derivative. 
 
Example 2 
The velocity of a rocket is given by 

 ( ) 300,8.9
21001014

1014ln2000 4

4

≤≤−







−×

×
= tt

t
tν  

(a) Use the backward difference approximation of the first derivative of ( )tν  to calculate the 
acceleration at s16=t .  Use a step size of s 2=∆t . 
(b) Find the absolute relative true error for part (a). 
Solution 

 ( ) ( ) ( )
t

ttta ii

∆
−

≈ −1νν  

 16=it  
 2Δ =t  
 ttt ii Δ1 −=−   
       216−=  
                   = 14 

 ( ) ( ) ( )
2

141616 νν −
≈a  

 ( ) ( ) ( )168.9
1621001014

1014ln200016 4

4

−







−×
×

=ν  

                     m/s07.392=  

 ( ) ( ) ( )148.9
1421001014

1014ln200014 4

4

−







−×
×

=ν  

)(xf  

x       xx ∆−  x  



02.02.6                                                        Chapter 02.02
  
 
 
             m/s24.334=  
 

 ( ) ( ) ( )
2

141616 νν −
≈a  

           
2

24.33407.392 −
=  

          2m/s 915.28=  
(b) The exact value of the acceleration at s16=t  from Example 1 is 
 ( ) 2m/s 674.2916 =a  
The absolute relative true error for the answer in part (a) is 

 100
674.29

915.28674.29
×

−
=∈t  

                  %5584.2=  
 
Forward Difference Approximation from Taylor Series 

Taylor’s theorem says that if you know the value of a function )(xf  at a point ix  and all its 
derivatives at that point, provided the derivatives are continuous between ix  and 1+ix , then 

 ( ) ( ) ( )( ) ( ) ( ) +−
′′

+−′+= +++
2

111 !2 ii
i

iiiii xxxfxxxfxfxf  

Substituting for convenience ii xxx −= +1Δ  

 ( ) ( ) ( ) ( ) ( ) +
′′

+′+=+
2

1 Δ
!2

Δ xxfxxfxfxf i
iii  

 ( ) ( ) ( ) ( ) ( ) +∆
′′

−
∆
−

=′ + x
xf

x
xfxf

xf iii
i !2

1  

 ( ) ( ) ( ) ( )xO
x

xfxfxf ii
i ∆+

∆
−

=′ +1  

The ( )xO ∆  term shows that the error in the approximation is of the order of x∆ . 
Can you now derive from the Taylor series the formula for the backward divided difference 
approximation of the first derivative? 
 As you can see, both forward and backward divided difference approximations of the 
first derivative are accurate on the order of ( )xO ∆ .  Can we get better approximations?  Yes, 
another method to approximate the first derivative is called the central difference 
approximation of the first derivative. 
From the Taylor series 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) +
′′′

+
′′

+′+=+
32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii    (1) 

and 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) +
′′′

−
′′

+′−=−
32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii    (2) 

Subtracting Equation (2) from Equation (1) 
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 ( ) ( ) ( )( ) ( ) ( ) +
′′′

+′=− −+
3

11 Δ
!3

2Δ2 xxfxxfxfxf i
iii  

 ( ) ( ) ( ) ( ) ( ) +∆
′′′

−
∆
−

=′ −+ 211

!32
x

xf
x

xfxf
xf iii

i  

 ( ) ( ) ( )211

2
xO

x
xfxf ii ∆+

∆
−

= −+  

hence showing that we have obtained a more accurate formula as the error is of the order of 
( )2xO ∆ . 

          
Figure 3 Graphical representation of central difference approximation of first derivative. 
 
Example 3 
The velocity of a rocket is given by 

 ( ) 300,8.9
21001014

1014ln2000 4

4

≤≤−







−×

×
= tt

t
tν . 

(a) Use the central difference approximation of the first derivative of ( )tν  to calculate the 
acceleration at s 16=t .  Use a step size of s 2=∆t . 
(b) Find the absolute relative true error for part (a). 
Solution 

 ( ) ( ) ( )
t

ttta ii
i ∆

−
≈ −+

2
11 νν  

 16=it  
 2=∆t  

)(xf  

xx ∆+  x  xx ∆−  x 
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18

216
1

=
+=
∆+=+ ttt ii

 

 
14

216
1

=
−=
∆−=− ttt ii

 

 ( ) ( ) ( )
( )22

141816 νν −
≈a  

          ( ) ( )
4

1418 νν −
=  

 ( ) ( ) ( )188.9
1821001014

1014ln200018 4

4

−







−×
×

=ν  

          m/s02.453=  

 ( ) ( ) ( )148.9
1421001014

1014ln200014 4

4

−







−×
×

=ν  

           m/s24.334=  
 

 ( ) ( ) ( )
4

141816 νν −
≈a  

           
4

24.33402.453 −
=  

          2m/s 694.29=  
(b) The exact value of the acceleration at s 16=t  from Example 1 is 
 ( ) 2m/s 674.2916 =a  
The absolute relative true error for the answer in part (a) is 

 100
674.29

694.29674.29
×

−
=∈t  

       %069157.0=  
The results from the three difference approximations are given in Table 1. 
 

Table 1 Summary of ( )16a  using different difference approximations 

Type of difference 
approximation 

( )16a   
( )2m/s  

%t∈  

Forward 
Backward 

Central 

30.475 
28.915 
29.695 

2.6967 
2.5584 
0.069157 

 
 Clearly, the central difference scheme is giving more accurate results because the 
order of accuracy is proportional to the square of the step size.  In real life, one would not 
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know the exact value of the derivative – so how would one know how accurately they have 
found the value of the derivative?  A simple way would be to start with a step size and keep 
on halving the step size until the absolute relative approximate error is within a pre-specified 
tolerance. 
 Take the example of finding ( )tv′  for  

 ( ) t
t

t 8.9
21001014

1014ln2000 4

4

−







−×

×
=ν   

at 16=t  using the backward difference scheme.  Given in Table 2 are the values obtained 
using the backward difference approximation method and the corresponding absolute relative 
approximate errors. 
 
Table 2 First derivative approximations and relative errors for different t∆  values of 
backward difference scheme. 
 

t∆  ( )tv′  %a∈  
2 
1 
0.5 
0.25 
0.125 

28.915 
29.289 
29.480 
29.577 
29.625 

 
1.2792 
0.64787 
0.32604 
0.16355 

 
 From the above table, one can see that the absolute relative approximate error 
decreases as the step size is reduced.  At 125.0=∆t , the absolute relative approximate error 
is 0.16355%, meaning that at least 2 significant digits are correct in the answer. 
 
Finite Difference Approximation of Higher Derivatives 
One can also use the Taylor series to approximate a higher order derivative.  For example, to 
approximate ( )xf ′′ , the Taylor series is  

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) +
′′′

+
′′

+′+=+
32

2 Δ2
!3

Δ2
!2

Δ2 x
xf

x
xf

xxfxfxf ii
iii                (3) 

where 
 xxx ii Δ22 +=+   

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 32
1 !3!2

x
xf

x
xf

xxfxfxf ii
iii ∆

′′′
+∆

′′
+∆′+=+     (4) 

where 
 xxx ii Δ1 −=−  
Subtracting 2 times Equation (4) from Equation (3) gives 
 ( ) ( ) ( ) ( )( ) ( )( ) 32

12 ΔΔ2 xxfxxfxfxfxf iiiii ′′′+′′+−=− ++  
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 ( ) ( ) ( ) ( )
( )

( )( ) +′′′−
+−

=′′ ++ xxf
x

xfxfxf
xf i

iii
i Δ

Δ
2

2
12  

 ( ) ( ) ( ) ( )
( )

( )xO
x

xfxfxfxf iii
i ∆+

∆
+−

≈′′ ++
2

12 2        (5) 

Example 4 
The velocity of a rocket is given by 

 ( ) 300,8.9
21001014

1014ln2000 4

4

≤≤−







−×

×
= tt

t
tν  

Use the forward difference approximation of the second derivative of ( )tν  to calculate the 
jerk at s 16=t .  Use a step size of s 2=∆t . 
Solution 

 ( ) ( ) ( ) ( )
( )2

12 2
t

ttttj iii
i ∆

+−
≈ ++ ννν  

 16=it  
 2=∆t  

 
18

216
1

=
+=
∆+=+ ttt ii

 

 
( )
( )

20
2216

22

=
+=

∆+=+ ttt ii

 

 ( ) ( ) ( ) ( )
( )22

161822016 ννν +−
≈j  

 ( ) ( ) ( )208.9
2021001014

1014ln200020 4

4

−







−×
×

=ν  

          m/s35.517=  

 ( ) ( ) ( )188.9
1821001014

1014ln200018 4

4

−







−×
×

=ν  

          m/s02.453=  

 ( ) ( ) ( )168.9
1621001014

1014ln200016 4

4

−







−×
×

=ν  

          m/s07.392=  
 

 ( ) ( )
4

07.39202.453235.51716 +−
≈j  

  3m/s 84515.0=  
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The exact value of ( )16j  can be calculated by differentiating 

 ( ) t
t

t 8.9
21001014

1014ln2000 4

4

−







−×

×
=ν  

twice as 

 ( ) ( )[ ]tν
dt
dta =  and  

 ( ) ( )[ ]ta
dt
dtj =  

Knowing that 

 ( )[ ]
t

t
dt
d 1ln =  and  

 2

11
ttdt

d
−=



  

 ( ) 8.9
21001014

1014
1014

210010142000 4

4

4

4

−







−×

×








×
−×

=
tdt

dtta   

        ( ) ( ) ( ) 8.92100
21001014

10141
1014

210010142000 24

4

4

4

−−










−×

×
−








×
−×

=
t

t  

        
t

t
3200

4.294040
+−
−−

=  

Similarly it can be shown that 

 ( ) ( )[ ]ta
dt
dtj =  

  2)3200(
18000

t+−
=  

 
( )

3

2

m/s77909.0         
)]16(3200[

1800016

=

+−
=j

 

The absolute relative true error is 

 100
77909.0

84515.077909.0
×

−
=∈t  

      %4797.8=  
 
The formula given by Equation (5) is a forward difference approximation of the second 
derivative and has an error of the order of ( )xO ∆ .  Can we get a formula that has a better 
accuracy?  Yes, we can derive the central difference approximation of the second derivative. 
The Taylor series is  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...
!4!3!2

432
1 +∆

′′′′
+∆

′′′
+∆

′′
+∆′+=+ xxfxxfxxfxxfxfxf iii

iii               (6) 

where 
 xxx ii Δ1 +=+  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∆
′′′′

+∆
′′′

−∆
′′

+∆′−=−
432

1 !4!3!2
xxfxxfxxfxxfxfxf iii

iii               (7) 

where 
 xxx ii Δ1 −=−  
Adding Equations (6) and (7), gives 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ...
12

2
4

2
11 +

∆′′′+∆′′+=+ −+
xxfxxfxfxfxf iiiii  

 ( ) ( ) ( ) ( )
( )

( )( ) ...
12

2 2

2
11 +

∆′′′′
−

∆
+−

=′′ −+ xxf
x

xfxfxfxf iiii
i  

 ( ) ( ) ( )
( )

( )22
11 2 xO

x
xfxfxf iii ∆+

∆
+−

= −+  

Example 5 
The velocity of a rocket is given by 

 ( ) 300 ,8.9
21001014

1014ln2000 4

4

≤≤−







−×

×
= tt

t
tν , 

(a) Use the central difference approximation of the second derivative of ( )tν  to calculate the 
jerk at s 16=t .  Use a step size of  s 2=∆t . 
Solution 
The second derivative of velocity with respect to time is called jerk.  The second order 
approximation of jerk then is 

 ( ) ( ) ( ) ( )
( )2

11 2
t

ttt
tj iii
i ∆

+−
≈ −+ ννν

 

 16=it  
 2=∆t  

 
18

216
1

=
+=
∆+=+ ttt ii

 

 
14

216
2

=
−=
∆−=+ ttt ii

 

 

 ( ) ( ) ( ) ( )
( )22

141621816 ννν +−
≈j  
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 ( ) ( ) ( )188.9
1821001014

1014ln200018 4

4

−







−×
×

=ν  

          m/s02.453=  

 ( ) ( ) ( )168.9
1621001014

1014ln200016 4

4

−







−×
×

=ν  

          m/s07.392=  

 ( ) ( ) ( )148.9
1421001014

1014ln200014 4

4

−







−×
×

=ν  

          m/s24.334=  

 ( ) ( ) ( ) ( )
( )22

141621816 ννν +−
≈j  

          ( )
4

24.33407.392202.453 +−
=  

          3m/s 77969.0=  
The absolute relative true error is 

 100
77908.0

77969.077908.0
×

−
=∈t  

      %077992.0=  
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Chapter 02.03 
Differentiation of Discrete Functions 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. find approximate values of the first derivative of functions that are given at 
discrete data points, and 

2. use Lagrange polynomial interpolation to find derivatives of discrete functions. 
 
To find the derivatives of functions that are given at discrete points, several methods are 
available.  Although these methods are mainly used when the data is spaced unequally, they 
can be used for data that is spaced equally as well. 
 
Forward Difference Approximation of the First Derivative 

We know 

      
x

xfxxf
xf

x 



 0

lim  

For a finite x , 

      
x

xfxxf
xf
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Figure 1 Graphical representation of forward difference approximation of first derivative. 
 
So given 1n  data points        nn yxyxyxyx ,,,,,,,, 221100  , the value of )(xf   for 

1 ii xxx , 1,...,0  ni , is given by 

      
ii

ii
i xx

xfxf
xf









1

1  

 

Example 1 

The upward velocity of a rocket is given as a function of time in Table 1. 
 

Table 1 Velocity as a function of time. 

(s) t  )m/s( )(tv

0 0 
10 227.04 
15 362.78 
20 517.35 

22.5 602.97 
30 901.67 

 
Using forward divided difference, find the acceleration of the rocket at s 16t . 
Solution 

To find the acceleration at s 16t , we need to choose the two values of velocity closest to 
s 16t , that also bracket s 16t  to evaluate it. The two points are s 15t  and s 20t  

 

)(xf  

xx   x x  
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t

ttv
ta ii
i 


  1  

 15it  

 201 it  

 

5     

1520     
1



  ii ttt

 

 
     

5

1520
16

 
a

 

          5

78.36235.517 


 
           = 2m/s 30.914   
 
Direct Fit Polynomials 

In this method, given 1n  data points        nn yxyxyxyx ,,,,,,,, 221100  , one can fit a thn  

order polynomial given by 
   n

n
n

nn xaxaxaaxP  


1
110   

To find the first derivative, 

     12
121 12

)( 
  n

n
n

n
n

n xnaxanxaa
dx

xdP
xP   

Similarly, other derivatives can also be found. 
 
Example 2 

The upward velocity of a rocket is given as a function of time in Table 2. 
 

Table 2 Velocity as a function of time. 
(s) t  )m/s( )(tv

0 0 
10 227.04 
15 362.78 
20 517.35 

22.5 602.97 
30 901.67 

Using a third order polynomial interpolant for velocity, find the acceleration of the rocket at 
s16t . 

 
Solution 

For the third order polynomial (also called cubic interpolation), we choose the velocity given 
by 
   3

3
2

210 tatataatv   
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Since we want to find the velocity at s16t , and we are using a third order polynomial, we 
need to choose the four points closest to 16t  and that also bracket 16t  to evaluate it. 
The four points are ,15 ,10 10  tt 202 t  and 5.223 t . 

   04.227,10 00  tvt  

   78.362,15 11  tvt  

   35.517,20 22  tvt  

   97.602,5.22 33  tvt  

 
such that 

        33
2

210 10101004.22710 aaaav   

        33
2

210 15151578.36215 aaaav 

        33
2

210 20202035.51720 aaaav   

        33
2

210 5.225.225.2297.6025.22 aaaav   

Writing the four equations in matrix form, we have 

 

























































97.602

35.517

78.362

04.227

1139125.5065.221

8000400201

3375225151

1000100101

3

2

1

0

a

a

a

a

 

 

 
Figure 2 Graph of upward velocity of the rocket vs. time. 
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Solving the above four equations gives 
 3810.40 a  

 289.211 a  

 13065.02 a  

 0054606.03 a  

Hence 
   3

3
2

210 tatataatv   

          5.2210  ,0054606.013065.0289.213810.4 32  tttt  
The acceleration at 16t  is given by 

    
16

16



t

tv
dt

d
a  

Given that   5.2210  ,0054606.013065.0289.213810.4 32  tttttv , 

   tv
dt

d
ta     

 32 0054606.013065.0289.213810.4         ttt
dt

d
  

      5.2210,016382.026130.0289.21   2  ttt  

     216016382.01626130.0289.2116 a  

         2m/s 664.29  
 
Lagrange Polynomial 

In this method, given    nn yxyx ,,,, 00  , one can fit a thn  order Lagrangian polynomial 

given by 





n

i
iin xfxLxf

0

)()()(  

where n  in )(xfn  stands for the thn  order polynomial that approximates the function 

)(xfy   and  



 




n

ij
j ji

j
i xx

xx
xL

0

)(  

)(xLi  is a weighting function that includes a product of 1n  terms with terms of ij   

omitted. 
Then to find the first derivative, one can differentiate  xfn  once, and so on for other 

derivatives. 
For example, the second order Lagrange polynomial passing through 
     221100 , and ,,,, yxyxyx  is  

 



02.03.6                                                        Chapter 02.03
  
 

     
       

       
    2

1202

10
1

2101

20
0

2010

21
2 xf

xxxx

xxxx
xf

xxxx

xxxx
xf

xxxx

xxxx
xf












  

 
Differentiating the above equation gives 
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1202
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xf
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Differentiating again would give the second derivative as 
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1
2101
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Example 3 

The upward velocity of a rocket is given as a function of time in Table 3.  
 
Table 3  Velocity as a function of time. 

(s) t  )m/s( )(tv

0 0 
10 227.04 
15 362.78 
20 517.35 

22.5 602.97 
30 901.67 

    
Determine the value of the acceleration at s16t  using second order Lagrangian polynomial 
interpolation for velocity. 
Solution 

  )()()()( 2
12

1

02

0
1

21

2

01

0
0

20

2

10

1 tv
tt

tt

tt

tt
tv

tt

tt

tt

tt
tv

tt

tt

tt

tt
tv 


































































  

    
    0

2010

212
t

tttt

ttt
ta 





 

    1
2101

202
t

tttt

ttt






 

    2
1202

102
t

tttt

ttt





  

 

      
    04.227

20101510

2015162
16




a
   

    78.362
20151015

2010162




  

                             
   

    35.517
15201020

1510162




  

               35.51714.078.36208.004.22706.0   

                     2m/s784.29  
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Chapter 03.01 
Solution of Quadratic Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. find the solutions of quadratic equations, 
2. derive the formula for the solution of quadratic equations, 
3. solve simple physical problems involving quadratic equations. 

 
 
What are quadratic equations and how do we solve them? 

A quadratic equation has the form 
02  cbxax , where 0a  

The solution to the above quadratic equation is given by 

a

acbb
x

2

42 
  

So the equation has two roots, and depending on the value of the discriminant, acb 42  , the 
equation may have real, complex or repeated roots. 
 If 042  acb , the roots are complex. 
 If 042  acb , the roots are real. 
 If 042  acb , the roots are real and repeated. 
 
Example 1 

Derive the solution to 02  cbxax . 
Solution 

02  cbxax  
Dividing both sides by a ,  0a , we get 

02 
a

c
x

a

b
x  

Note if 0a , the solution to  
 02  cbxax  
is  
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b

c
x   

Rewrite 

02 
a

c
x

a

b
x  

as 

0
42 2

22







 

a

c

a

b

a

b
x  

a

c

a

b

a

b
x 






 

2

22

42
  

       
2

2

4

4

a

acb 
  

2

2

4

4

2 a

acb

a

b
x


  

 
a

acb

2

42 
  

a

acb

a

b
x

2

4

2

2 
  

    
a

acbb

2

42 
  

 
Example 2 

A ball is thrown down at 50 mph from the top of a building.  The building is 420 feet tall.  
Derive the equation that would let you find the time the ball takes to reach the ground. 
Solution 

The distance s  covered by the ball is given by 

2

2

1
gtuts   

where 
u = initial velocity (ft/s) 
g = acceleration due to gravity ( 2ft/s ) 
t  = time )(s  

Given 

mile 1

ft  5280

s 3600

hour 1

hour

miles
50 u  

s

ft
 73.33      

2s

ft
32.2g  

ft 420s  
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we have 

  2 2.32
2

1
  73.33  420 tt   

04203373116 2  t.t.  
The above equation is a quadratic equation, the solution of which would give the time it 
would take the ball to reach the ground.  The solution of the quadratic equation is 

 

870.7,315.3   

)1.16(2

)420(1.16433.7333.73 2




t

 

Since ,0t  the valid value of time t  is s  3.315 . 
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Topic Solution of quadratic equations 
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Chapter 03.02 
Solution of Cubic Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. find the exact solution of a general cubic equation. 
 
 
How to Find the Exact Solution of a General Cubic Equation 
In this chapter, we are going to find the exact solution of a general cubic equation 

023 =+++ dcxbxax                                (1) 
To find the roots of Equation (1), we first get rid of the quadratic term ( )2x  by making the 
substitution 

a
byx
3

−=                                  (2) 

to obtain 

0
333

23

=+⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ − d

a
byc

a
byb

a
bya                             (3) 

Expanding Equation (3) and simplifying, we obtain the following equation 

0
327

2
3 2

32
3 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

a
bc

a
bdy

a
bcay                              (4) 

Equation (4) is called the depressed cubic since the quadratic term is absent.  Having the 
equation in this form makes it easier to solve for the roots of the cubic equation (Click here to 
know the history behind solving cubic equations exactly). 
First, convert the depressed cubic Equation (4) into the form  

0
327

21
3

1
2

32
3 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

a
bc

a
bd

a
y

a
bc

a
y  

03 =++ feyy                                 (5) 
where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

a
bc

a
e

3
1 2
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

a
bc

a
bd

a
f

327
21

2

3

 

Now, reduce the above equation using Vieta’s substitution 

z
szy +=                                  (6) 

For the time being, the constant  is undefined.  Substituting into the depressed cubic 
Equation (5), we get  

s

0
3

=+⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ + f

z
sze

z
sz                                (7) 

Expanding out and multiplying both sides by , we get 3z
( ) ( ) 033 32346 =++++++ szessfzzesz                              (8) 

Now, let 
3
es −=  (  is no longer undefined) to simplify the equation into a tri-quadratic 

equation. 

s

0
27

3
36 =−+

efzz                                 (9) 

By making one more substitution, , we now have a general quadratic equation which 
can be solved using the quadratic formula. 

3zw =

0
27

3
2 =−+

efww                               (10) 

Once you obtain the solution to this quadratic equation, back substitute using the previous 
substitutions to obtain the roots to the general cubic equation. 

xyzw →→→  
where we assumed 

3zw =                                            (11) 

z
szy +=  

3
es −=                                (12) 

a
byx
3

−=   

         
Note: You will get two roots for  as Equation (10) is a quadratic equation. Using 

 would then give you three roots for each of the two roots of , hence giving 
you six root values for 

w
(11)Equation w

z . But the six root values of z  would give you six values of  
( ); but three values of  will be identical to the other three.  So one gets only 
three values of , and hence three values of 

y
(6)Equation y

y x . (Equation (2)) 
 
Example 1 
Find the roots of the following cubic equation. 

080369 23 =−+− xxx  
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Solution 

For the general form given by Equation (1) 
023 =+++ dcxbxax  

we have 
1=a , , , 9−=b 36=c 80−=d  

in 
080369 23 =−+− xxx                          (E1-1) 

Equation (E1-1) is reduced to  
03 =++ feyy  

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

a
bc

a
e

3
1 2

 

   ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=

13
936

1
1 2

 

    9=
and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

a
bc

a
bd

a
f

327
21

2

3

 

     ( )
( )

( )( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

−
+−=

13
369

127
9280

1
1

2

3

 

      26−=
giving 

02693 =−+ yy                           (E1-2) 
For the general form given by Equation (5) 

03 =++ feyy  
we have 

9=e ,  26−=f
in Equation (E1-2). 
From Equation (12) 

3
es −=  

   
3
9

−=  

    3−=
From Equation (10) 

0
27

3
2 =−+

efww  

0
27
926

3
2 =−− ww  

027262 =−− ww  
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where 
3zw =  

and 

z
szy +=  

   
z

z 3
−=  

( ) ( ) ( )( )
( )12

27142626 2 −−−±−−
=w  

     1,27 −=
The solution is 

271 =w  
12 −=w  

Since 
3zw =  
wz =3  

For  1ww =

1
3 wz =  

      27=
       027 ie=
Since  

3zw =  
( ) ααθ iii euuere 333

==  
( ) ( ααθθ 3sin3cossincos 3 iuir +=+ )  

resulting in 
3ur =  

αθ 3coscos =  
αθ 3sinsin =  

Since θsin  and θcos  are periodic of π2 , 
kπθα 23 +=  

3
2 kπθα +

=  

k  will take the value of 0, 1 and 2 before repeating the same values of α . 
So, 

2 ,1 ,0 ,
3
2

=
+

= kkπθα  

31
θα =  

( )
3
2

2
πθα +

=  
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( )
3
4

3
πθα +

=  

So roots of  are 3zw =

⎟
⎠
⎞

⎜
⎝
⎛ +=

3
sin

3
cos3

1

1
θθ irz  

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=
3
2sin

3
2cos3

1

2
πθπθ irz  

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=
3
4sin

3
4cos3

1

3
πθπθ irz  

gives 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

3
0sin

3
0cos27 3/1

1 iz  

      3=

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=
3
20sin

3
20cos27 3/1

2
ππ iz  

     ⎟
⎠
⎞

⎜
⎝
⎛ +=

3
2sin

3
2cos3 ππ i  

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

2
3

2
13 i  

     
2

33
2
3 i+−=  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=
3
40sin

3
40cos27 3/1

3
ππ iz  

     ⎟
⎠
⎞

⎜
⎝
⎛ +=

3
4sin

3
4cos3 ππ i  

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

2
3

2
13 i  

     
2

33
2
3 i−−=  

Since 

z
zy 3
−=  

1
11

3
z

zy −=  

     
3
33−=  

      2=
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2
22

3
z

zy −=  

     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

2
33

2
3

3
2

33
2
3

i
i  

     
31
335

i
i

+−
+

−=  

     
31
31

31
335

i
i

i
i

−−
−−

×
+−
+

−=  

     321 i+−=  

3
33

3
z

zy −=  

     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

2
33

2
3

3
2

33
2
3

i
i  

    
31
335

i
i

+
−

=  

    
31
31

31
335

i
i

i
i

−
−

×
+
−

=  

    321 i−−=  
Since 

3+= yx  
311 += yx  

      32 +=
      5=

322 += yx  
     ( ) 3321 ++−= i  
     322 i+=  

333 += yx  

     ( ) 3321 +−−= i  
     322 i−=  

 
The roots of the original cubic equation 

080369 23 =−+− xxx  
are  and , that is, , , 21 xx 3x

5 , 322 i+ , 322 i−  
Verifying 



Solution of Cubic Equations                                                                                03.02.7 
 

( ) ( )( ) ( )( ) 03223225 =−−+−− ixixx  
gives 

080369 23 =−+− xxx  
Using 

12 −=w  
would yield the same values of the three roots of the equation.  Try it. 
 
 
Example 2 
Find the roots of the following cubic equation 
  0104.203.0 623 =×+− −xx
Solution 
For the general form 

023 =+++ dcxbxax  
6104.2 ,0 ,03.0 ,1 −×==−== dcba  

Depress the cubic equation by letting (Equation (2)) 

a
byx

3
−=  

( )
( )13
03.0   −

−= y  

01.0   += y  
Substituting the above equation into the cubic equation and simplifying, we get 

( ) ( ) 0104103 743 =×+×− −− yy  
That gives  and  for Equation (5), that is, . 4103 −×−=e 7104 −×=f 03 =++ feyy
Now, solve the depressed cubic equation by using Vieta’s substitution as 

z
szy +=  

to obtain 
( ) ( ) ( ) 010331041033 32437446 =+×−+×+×−+ −−− szsszzsz  

Letting 
4

4

10
3
103

3
−

−

=
×−

−=−=
es  

we get the following tri-quadratic equation 
( ) 0101104 12376 =×+×+ −− zz  

Using the following conversion, , we get a general quadratic equation 3zw =
( ) ( ) 0101104 1272 =×+×+ −− ww  

Using the quadratic equation, the solutions for  are w

( ) ( )( )
( )12

10114104104 12277 −−− ×−×±×−
=w  

giving 
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( )77
1 1037979589711.9102 −− ×+×−= iw   

( )77
2 1037979589711.9102 −− ×−×−= iw  

Each solution of  yields three values of 3zw = z .  The three values of z  from  are in 
rectangular form. 

1w

Since 
3zw =  

Then 

3
1

wz =  
Let 

( ) θθθ ireirw =+= sincos  
then 

( ) ααα iueiuz =+= sincos  
This gives 

3zw =  
( ) ααθ iii euuere 333

==  
( ) ( ααθθ 3sin3cossincos 3 iuir +=+ )  

resulting in 
  3ur =
 αθ 3coscos =  
 αθ 3sinsin =  
Since θsin  and θcos  are periodic of π2 , 

kπθα 23 +=  

3
2 kπθα +

=  

k  will take the value of 0, 1 and 2 before repeating the same values of α . 
So, 

2 ,1 ,0 ,
3
2

=
+

= kkπθα  

31
θα =  

( )
3
2

2
πθα +

=  

( )
3
4

3
πθα +

=  

So the roots of  are 3zw =

⎟
⎠
⎞

⎜
⎝
⎛ +=

3
sin

3
cos3

1

1
θθ irz  

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=
3
2sin

3
2cos3

1

2
πθπθ irz  
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⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=
3
4sin

3
4cos3

1

3
πθπθ irz  

So for 
( )77

1 1037979589711.9102 −− ×+×−= iw  

( ) ( )2727 1037979589711.9102 −− ×+×−=r  
    6101 −×=

7

7
1

102
1037979589711.9tan −

−
−

×−
×

=θ  

    (2nd quadrant because (the numerator) is positive and 772154248.1= y x  (the 
denominator) is negative) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +×= −

3
772154248.1sin

3
772154248.1cos101 3

1
6

1 iz  

      350055695756.0170083054095.0 i+=

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

×= −

3
2772154248.1sin

3
2772154248.1cos101 3

1
6

2
ππ iz  

      150044079078.0460089760987.0 i+−=

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

×= −

3
4772154248.1sin

3
4772154248.1cos101 3

1
6

3
ππ iz  

      480099774834.03130006706892.0 i−=
Compiling 

340055695756.0180083054095.01 iz +=  
140044079078.0460089760987.02 iz +−=  

480099774834.01057068922852.6 4
3 iz −×= −  

Similarly, the three values of z  from  in rectangular form are 2w
340055695756.0180083054095.04 iz −=  

140044079078.0460089760987.05 iz −−=  
480099774834.01057068922852.6 4

6 iz +×= −  
Using Vieta’s substitution (Equation (6)),  

z
szy +=  

( )
z

zy
4101 −×

+=  

we back substitute to find three values for . y
For example, choosing 

340055695756.0180083054095.01 iz +=  
gives 

340055695756.0180083054095.0
101340055695756.0180083054095.0

4

1 i
iy

+
×

++=
−
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40055695763.0180083054095.0
40055695763.0180083054095.0

40055695763.0780083054090.0
101    

340055695756.0180083054095.0
4

i
i

i

i

−
−

×
+

×
+

+=
−  

( )40055695763.0180083054095.0
101
101     

340055695756.0180083054095.0

4

4

i

i

−
×
×

+

+=

−

−  

360166108190.0=  
The values of ,  and  give 1z 2z 3z

360166108190.01 =y  
90179521974.02 −=y  

570013413784.03 =y  
respectively. The three other z  values of ,  and  give the same values as ,  and 

, respectively. 
4z 5z 6z 1y 2y

3y
Now, using the substitution of 

01.0+= yx  
the three roots of the given cubic equation are 

01.0360166108190.01 +=x  
      360266108190.0=

01.090179521974.02 +−=x  
      90079521974.0−=

01.0570013413784.03 +=x  
      570113413784.0=
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Chapter 03.03 
Bisection Method of Solving a Nonlinear Equation 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. follow the algorithm of the bisection method of solving a nonlinear equation, 
2. use the bisection method to solve examples of finding roots of a nonlinear equation, 

and 
3. enumerate the advantages and disadvantages of the bisection method. 

 
 
 
What is the bisection method and what is it based on? 
One of the first numerical methods developed to find the root of a nonlinear equation 

0)( =xf  was the bisection method (also called binary-search method).  The method is based 
on the following theorem.  
 
Theorem 
An equation 0)( =xf , where )(xf  is a real continuous function, has at least one root 
between 



x  and ux  if 0)()( <uxfxf


 (See Figure 1).     
Note that if 0)()( >uxfxf



, there may or may not be any root between 


x  and ux  
(Figures 2 and 3).  If 0)()( <uxfxf



, then there may be more than one root between 


x  and 

ux  (Figure 4).  So the theorem only guarantees one root between 


x  and ux . 
 

Bisection method 
Since the method is based on finding the root between two points, the method falls 

under the category of bracketing methods. 
Since the root is bracketed between two points, 



x  and ux , one can find the mid-
point, mx  between 



x  and ux .  This gives us two new intervals  
1. 



x  and mx , and  
2. mx  and ux . 
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Figure 1   At least one root exists between the two points if the function is real, continuous, 
and changes sign. 
 
 

                                            
Figure 2   If the function )(xf  does not change sign between the two points, roots of the 
equation 0)( =xf  may still exist between the two points. 
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Figure 3   If the function )(xf  does not change sign between two points, there may not be 
any roots for the equation 0)( =xf  between the two points. 

 

 
Figure 4   If the function )(xf  changes sign between the two points, more than one root for 
the equation 0)( =xf  may exist between the two points. 
 
Is the root now between 



x  and mx  or between mx  and ux ?  Well, one can find the sign of 
)()( mxfxf



, and if 0)()( <mxfxf


 then the new bracket is between 


x  and mx , otherwise, 
it is between mx  and ux .  So, you can see that you are literally halving the interval.  As one 
repeats this process, the width of the interval [ ]uxx ,



 becomes smaller and smaller, and you 
can zero in to the root of the equation 0)( =xf .  The algorithm for the bisection method is 
given as follows. 
 

f (x) 

xℓ 
xu x 

f (x) 

xℓ xu 
x 

f (x) 

xℓ xu 
x 
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Algorithm for the bisection method 

The steps to apply the bisection method to find the root of the equation 0)( =xf  are 
1. Choose 



x  and ux  as two guesses for the root such that 0)()( <uxfxf


, or in other 
words, )(xf  changes sign between 



x  and ux . 
2. Estimate the root, mx , of the equation 0)( =xf  as the mid-point between 



x  and ux  
as 

 
2
 

 = u
m

xx
x

+
  

3. Now check the following 
a) If 0)()( <mxfxf



, then the root lies between 


x  and mx ; then 


xx =  and 

mu xx = .    
b) If 0)()( >mxfxf



, then the root lies between mx  and ux ; then mxx =


 and 

uu xx = . 
c) If 0)()( =mxfxf



; then the root is mx .  Stop the algorithm if this is true. 
4. Find the new estimate of the root 

 
2
  = u

m
xxx +

  

            Find the absolute relative approximate error as 

 100   -  = new

oldnew

×∈
m

mm
a x

xx
 

where 
           new

mx  = estimated root from present iteration 
           old

mx = estimated root from previous iteration 
5. Compare the absolute relative approximate error a∈  with the pre-specified relative 

error tolerance s∈ .  If sa >∈∈ , then go to Step 3, else stop the algorithm.  Note one 
should also check whether the number of iterations is more than the maximum 
number of iterations allowed.  If so, one needs to terminate the algorithm and notify 
the user about it. 

 
Example 1 
You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC 
commodes.  The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is submerged when floating in water. 
The equation that gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423 =×+− −xx  
Use the bisection method of finding roots of equations to find the depth x  to which the ball 
is submerged under water.  Conduct three iterations to estimate the root of the above 
equation. Find the absolute relative approximate error at the end of each iteration, and the 
number of significant digits at least correct at the end of each iteration. 
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Solution 

From the physics of the problem, the ball would be submerged between 0=x  and Rx 2= ,  
where  

ball,  theof radius=R  
that is 

Rx 20 ≤≤  
)055.0(20 ≤≤ x  

11.00 ≤≤ x  
 

 
                                                Figure 5   Floating ball problem. 
 
Lets us assume 

11.0 ,0 == uxx


 
Check if the function changes sign between 



x  and ux . 
4423 10993.310993.3)0(165.0)0()0()( −− ×=×+−== fxf



 
4423 10662.210993.3)11.0(165.0)11.0()11.0()( −− ×−=×+−== fxf u  

Hence  
 0)10662.2)(10993.3()11.0()0()()( 44 <×−×== −−ffxfxf u

 
So there is at least one root between 



x  and ux , that is between 0 and 0.11. 
Iteration 1 
The estimate of the root is 

2
u

m
xxx +

=   

      
2

11.00 +
=  

                 055.0=   
( ) ( ) ( ) ( ) 5423 10655.610993.3055.0165.0055.0055.0 −− ×=×+−== fxf m  

( )( ) 010655.610993.3)055.0()0()()( 44 >××== −−ffxfxf m
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Hence the root is bracketed between mx  and ux , that is, between 0.055 and 0.11.  So, the 
lower and upper limit of the new bracket is 

11.0 ,055.0 == uxx


 
At this point, the absolute relative approximate error a∈  cannot be calculated as we do not 
have a previous approximation. 
Iteration 2 
The estimate of the root is 

2
u

m
xxx +

=   

      
2

11.0055.0 +
=  

      0825.0=  
 4423 10622.110993.3)0825.0(165.0)0825.0()0825.0()( −− ×−=×+−== fxf m  
 ( ) ( ) ( ) ( ) ( ) ( ) 010622.110655.60825.0055.0 45 <×−××== −−ffxfxf m

 
Hence, the root is bracketed between 



x  and mx , that is, between 0.055 and 0.0825.  So the 
lower and upper limit of the new bracket is 

0825.0 ,055.0 == uxx


 
The absolute relative approximate error a∈  at the end of Iteration 2 is 

100new

oldnew

×
−

=∈
m

mm
a x

xx  

      100
0825.0

055.00825.0
×

−
=  

      %33.33=  
None of the significant digits are at least correct in the estimated root of 0825.0=mx  
because the absolute relative approximate error is greater than 5%. 
Iteration 3 

2
u

m
xxx +

=   

     
2

0825.0055.0 +
=  

     06875.0=  
5423 10563.510993.3)06875.0(165.0)06875.0()06875.0()( −− ×−=×+−== fxf m  

0)105.563()10655.6()06875.0()055.0()()( 55 <×−××== −ffxfxf m

 
Hence, the root is bracketed between 



x  and mx , that is, between 0.055 and 0.06875.  So the 
lower and upper limit of the new bracket is 

06875.0 ,055.0 == uxx


 
The absolute relative approximate error a∈  at the ends of Iteration 3 is 
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100new

oldnew

×
−

=∈
m

mm
a x

xx  

       100
06875.0

0825.006875.0
×

−
=  

       %20=  
Still none of the significant digits are at least correct in the estimated root of the equation as 
the absolute relative approximate error is greater than 5%. 
Seven more iterations were conducted and these iterations are shown in Table 1. 
 
      Table 1   Root of 0)( =xf  as function of number of iterations for bisection method. 

Iteration 


x  ux  mx  a∈ % )( mxf  
1 0.00000 0.11 0.055 ----------   510655.6 −×  
2 0.055 0.11 0.0825 33.33 410622.1 −×−  
3 0.055 0.0825 0.06875 20.00 510563.5 −×−  
4 0.055 0.06875 0.06188 11.11   610484.4 −×  
5 0.06188 0.06875 0.06531 5.263 510593.2 −×−  
6 0.06188 0.06531 0.06359 2.702 5100804.1 −×−  
7 0.06188 0.06359 0.06273 1.370 610176.3 −×−  
8 0.06188 0.06273 0.0623 0.6897   710497.6 −×  
9 0.0623 0.06273 0.06252 0.3436 610265.1 −×−  
10 0.0623 0.06252 0.06241 0.1721 7100768.3 −×−  

 
At the end of 10th iteration, 

%1721.0=∈a  
Hence the number of significant digits at least correct is given by the largest value of m  for 
which 

m
a

−×≤∈ 2105.0  
m−×≤ 2105.01721.0  

m−≤ 2103442.0  
m−≤ 2)3442.0log(  

463.2)3442.0log(2 =−≤m  
So 

2=m  
The number of significant digits at least correct in the estimated root of 06241.0  at the end of 
the th10  iteration is 2. 
 
Advantages of bisection method 

a) The bisection method is always convergent.  Since the method brackets the root, 
the method is guaranteed to converge. 

b) As iterations are conducted, the interval gets halved.   So one can guarantee the 
error in the solution of the equation. 
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Drawbacks of bisection method 
a) The convergence of the bisection method is slow as it is simply based on halving 

the interval.   
b) If one of the initial guesses is closer to the root, it will take larger number of 

iterations to reach the root. 
c) If a function )(xf  is such that it just touches the x -axis (Figure 6) such as 
 0)( 2 == xxf  
      it will be unable to find the lower guess, 



x , and upper guess, ux , such that 
 0)()( <uxfxf



 
d) For functions )(xf  where there is a singularity1  and it reverses sign at the 

singularity, the bisection method may converge on the singularity (Figure 7).  An 
example includes 

x
xf 1)( =  

                 where 2−=


x , 3=ux  are valid initial guesses which satisfy 
0)()( <uxfxf



 
However, the function is not continuous and the theorem that a root exists is also 
not applicable. 

 

  
          Figure 6   The equation 0)( 2 == xxf  has a single root at 0=x  that cannot be bracketed. 
 
 
 
 
 
 
 
 
1 A singularity in a function is defined as a point where the function becomes infinite.  For example, for a function 
such as x/1 , the point of singularity is 0=x  as it becomes infinite. 

f (x) 

x 
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                  Figure 7   The equation ( ) 01

==
x

xf  has no root but changes sign. 
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Chapter 03.04 
Newton-Raphson Method of Solving a Nonlinear 
Equation 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. derive the Newton-Raphson method formula, 
2. develop the algorithm of the Newton-Raphson method, 
3. use the Newton-Raphson method to solve a nonlinear equation, and 
4. discuss the drawbacks of the Newton-Raphson method. 

 
Introduction 

Methods such as the bisection method and the false position method of finding roots of a 
nonlinear equation 0)( xf  require bracketing of the root by two guesses.  Such methods 
are called bracketing methods.  These methods are always convergent since they are based on 
reducing the interval between the two guesses so as to zero in on the root of the equation. 

In the Newton-Raphson method, the root is not bracketed.  In fact, only one initial 
guess of the root is needed to get the iterative process started to find the root of an equation.  
The method hence falls in the category of open methods.  Convergence in open methods is 
not guaranteed but if the method does converge, it does so much faster than the bracketing 
methods. 

 
Derivation 

The Newton-Raphson method is based on the principle that if the initial guess of the root of 
0)( xf  is at ix , then if one draws the tangent to the curve at )( ixf , the point 1ix  where 

the tangent crosses the x -axis is an improved estimate of the root (Figure 1). 
Using the definition of the slope of a function, at ixx   

  θ = xf i tan  

 
1

0




ii

i

xx

xf
 = , 

which gives 
 
 i

i
ii xf

xf
 = xx


1        (1) 
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Equation (1) is called the Newton-Raphson formula for solving nonlinear equations of the 
form   0xf .  So starting with an initial guess, ix , one can find the next guess, 1ix , by 

using Equation (1).  One can repeat this process until one finds the root within a desirable 
tolerance. 
 
Algorithm 

The steps of the Newton-Raphson method to find the root of an equation   0xf   are 

1. Evaluate  xf   symbolically 

2. Use an initial guess of the root, ix , to estimate the new value of the root, 1ix , as 

             
 
 i

i
ii xf

xf
 = xx


1  

3. Find the absolute relative approximate error a  as 

            010
1

1 







i

ii
a x

 xx
 =  

4. Compare the absolute relative approximate error with the pre-specified relative 
error tolerance, s .  If a > s , then go to Step 2, else stop the algorithm.  Also, 

check if the number of iterations has exceeded the maximum number of iterations 
allowed.  If so, one needs to terminate the algorithm and notify the user. 

 

                        
                           Figure 1  Geometrical illustration of the Newton-Raphson method. 
 

f (x) 

f (xi) 

f (xi+1) 

    xi+2     xi+1     xi 
    x 

    θ 

[xi,  f (xi)] 
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Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC 
commodes.  The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is submerged when floating in water. 
 

                                       
                                          Figure 2   Floating ball problem. 
 
The equation that gives the depth x  in meters to which the ball is submerged under water is 
given by 

010993.3165.0 423  xx  
Use the Newton-Raphson method of finding roots of equations to find  

a) the depth x  to which the ball is submerged under water.  Conduct three iterations 
to estimate the root of the above equation.   

b) the absolute relative approximate error at the end of each iteration, and  
c) the number of significant digits at least correct at the end of each iteration. 

Solution 

  423 10993.31650  x.xxf  

  x.xxf 3303 2   

Let us assume the initial guess of the root of   0xf  is ..x m 0500    This is a reasonable 

guess (discuss why 0x  and m 11.0x  are not good choices) as the extreme values of the 
depth x  would be 0 and the diameter (0.11 m) of the ball.   
Iteration 1  
The estimate of the root is 

 
 0

0
01 xf

xf
xx


  

    
   

   0503300503

10993.30501650050
050

2

423

...

...
.







 

    
3

4

109

10118.1
050 






 .  

     01242.0050  .  
                062420.   
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The absolute relative approximate error a  at the end of Iteration 1 is 

100
1

01 



x

xx
a  

      

19.90% 

100
062420

050062420







.

..
 

        
The number of significant digits at least correct is 0, as you need an absolute relative 
approximate error of 5% or less for at least one significant digit to be correct in your result. 
Iteration 2 
The estimate of the root is 

 
 1

1
12 xf

xf
xx


  

     
   

   0624203300624203

10993.30624201650062420
062420

2

423

...

...
.







 

     
3

7

1090973.8

10977813
062420 







.

.  

      5104646.4062420  .  
     062380.  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

      100
062380

062420062380





.

..
 

       %07160.  
The maximum value of m  for which m

a
 2105.0  is 2.844.  Hence, the number of 

significant digits at least correct in the answer is 2. 
Iteration 3 
The estimate of the root is 

 
 2

2
23 xf

xf
xx


  

    
   

   0623803300623803

10993.30623801650062380
062380

2

423

...

...
.







 

    
3

11

1091171.8

1044.4
062380 






 .  

      9109822.4062380  .  
     062380.  
The absolute relative approximate error a  at the end of Iteration 3 is 
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100
062380

062380062380





.

..
a  

       0  
The number of significant digits at least correct is 4, as only 4 significant digits are carried 
through in all the calculations. 
 
Drawbacks of the Newton-Raphson Method 

1. Divergence at inflection points 
 If the selection of the initial guess or an iterated value of the root turns out to be close to the 
inflection point (see the definition in the appendix of this chapter) of the function  xf  in the 

equation   0xf , Newton-Raphson method may start diverging away from the root.  It may 
then start converging back to the root.  For example, to find the root of the equation 

    0512.01 3  xxf  
the Newton-Raphson method reduces to 

2

33

1 )1(3

512.0)1(





i

i
ii x

x
 = xx  

Starting with an initial guess of 0.50 x , Table 1 shows the iterated values of the root of the 

equation.  As you can observe, the root starts to diverge at Iteration 6 because the previous 
estimate of 0.92589 is close to the inflection point of 1x  (the value of  xf '  is zero at the 
inflection point). Eventually, after 12 more iterations the root converges to the exact value of 

2.0x . 
Table 1   Divergence near inflection point. 

Iteration 
Number ix  

0 5.0000 
1 3.6560 
2 2.7465 
3 2.1084 
4 1.6000 
5 0.92589 
6 –30.119 
7 –19.746 
8 –12.831 
9 –8.2217 
10 –5.1498 
11 –3.1044 
12 –1.7464 
13 –0.85356 
14 –0.28538 
15 0.039784 
16 0.17475 
17 0.19924 
18 0.2 
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Figure 3   Divergence at inflection point for     01 3  xxf . 

 
2. Division by zero  
For the equation  

  01042030 623  .x.xxf  
the Newton-Raphson method reduces to  

ii

ii
ii

xx

.x.x
 = xx

06.03

1042030
2

623

1 





  

For 00 x  or 02.00 x , division by zero occurs (Figure 4).  For an initial guess close to 

0.02 such as 01999.00 x , one may avoid division by zero, but then the denominator in the 

formula is a small number.  For this case, as given in Table 2, even after 9 iterations, the 
Newton-Raphson method does not converge. 
 

Table 2   Division by near zero in Newton-Raphson method. 
Iteration  
Number ix  )( ixf  %a  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

 0.019990 
–2.6480 
–1.7620 
–1.1714 
–0.77765 
–0.51518 
–0.34025 
–0.22369 
–0.14608 
–0.094490

-6101.60000
18.778 
 –5.5638 
 –1.6485 
 –0.48842 
 –0.14470 
 –0.042862 
 –0.012692 
 –0.0037553 
 –0.0011091 

100.75 
 50.282
 50.422
 50.632
 50.946
 51.413
 52.107
 53.127
 54.602
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-7.50E-06

-5.00E-06

-2.50E-06

0.00E+00

2.50E-06
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7.50E-06

1.00E-05
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x

f(x)

0.02

 
         Figure 4   Pitfall of division by zero or a near zero number. 
 
3. Oscillations near local maximum and minimum  
Results obtained from the Newton-Raphson method may oscillate about the local maximum 
or minimum without converging on a root but converging on the local maximum or 
minimum. Eventually, it may lead to division by a number close to zero and may diverge. 
For example, for 

  022  xxf  
 the equation has no real roots (Figure 5 and Table 3). 

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75  -0.3040 0.5 3.142

 
        Figure 5   Oscillations around local minima for   22  xxf . 
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Table 3   Oscillations near local maxima and minima in Newton-Raphson method. 
Iteration  
Number ix  )( ixf  %a  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–1.0000 
  0.5 
–1.75 
–0.30357
 3.1423 
 1.2529 
–0.17166
 5.7395 
 2.6955  
 0.97678 

3.00 
2.25 
5.063  
2.092 
11.874
3.570 
2.029 
34.942
9.266 
2.954  

300.00 
128.571
 476.47 
109.66 
150.80 
829.88 
102.99 
112.93 
175.96 

 
4. Root jumping  
In some case where the function )(xf  is oscillating and has a number of roots, one may 
choose an initial guess close to a root.  However, the guesses may jump and converge to 
some other root.  For example for solving the equation 0sin x  if you choose 

 539822.74.20  x  as an initial guess, it converges to the root of 0x  as shown in 

Table 4 and Figure 6.  However, one may have chosen this as an initial guess to converge to 
283185362 .x   . 

 
                     Table 4   Root jumping in Newton-Raphson method. 

Iteration  
Number ix  )( ixf  %a  

0 
1 
2 
3 
4 
5 

 7.539822 
 4.462 
 0.5499 
–0.06307 

410376.8   
131095861.1 

 0.951 
–0.969 
  0.5226 
–0.06303 

510375.8   
131095861.1 

 
68.973 
711.44 
971.91 

41054.7   
101028.4   
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-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

 
Figure 6   Root jumping from intended location of root for   0sin  xxf . 

 
Appendix A. What is an inflection point? 

For a function  xf , the point where the concavity changes from up-to-down or 

down-to-up is called its inflection point.  For example, for the function    31 xxf , the 
concavity changes at 1x  (see Figure 3), and hence (1,0) is an inflection point.    

An inflection points MAY exist at a point where 0)(  xf  and where )('' xf  does 
not exist.  The reason we say that it MAY exist is because if 0)(  xf , it only makes it a 

possible inflection point.  For example, for 16)( 4  xxf , 0)0( f , but the concavity does 

not change at 0x . Hence the point (0, –16) is not an inflection point of 16)( 4  xxf . 

For    31 xxf , )(xf  changes sign at 1x  ( 0)(  xf  for 1x , and 0)(  xf  
for 1x ), and thus brings up the Inflection Point Theorem for a function )(xf  that states the 
following. 

“If )(' cf  exists and )(cf   changes sign at cx  , then the point ))(,( cfc  is an 
inflection point of the graph of f .” 

 
Appendix B. Derivation of Newton-Raphson method from Taylor series 

Newton-Raphson method can also be derived from Taylor series.  For a general function 
 xf , the Taylor series is 

      iiiii xxxfxfxf   11 + 
    

2
1!2 ii

i xx
xf"

  

As an approximation, taking only the first two terms of the right hand side, 
      iiiii xxxfxfxf   11  

and we are seeking a point where   ,xf 0  that is, if we assume 

  ,xf i 01   
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    iiii xxxfxf  10  

which gives 
 
 i

i
ii xf'

xf
xx 1  

This is the same Newton-Raphson method formula series as derived previously using the 
geometric method. 
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Chapter 03.05 
Secant Method of Solving Nonlinear Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. derive the secant method to solve for the roots of a nonlinear equation, 
2. use the secant method to numerically solve a nonlinear equation. 

 
What is the secant method and why would I want to use it instead of the Newton-
Raphson method? 

The Newton-Raphson method of solving a nonlinear equation 0)( xf  is given by the 
iterative formula 

)(

)(
1

i

i
ii xf

xf
 = xx


          (1) 

One of the drawbacks of the Newton-Raphson method is that you have to evaluate the 
derivative of the function.  With availability of symbolic manipulators such as Maple, 
MathCAD, MATHEMATICA and MATLAB, this process has become more convenient.  
However, it still can be a laborious process, and even intractable if the function is derived as 
part of a numerical scheme.  To overcome these drawbacks, the derivative of the function, 

)(xf  is approximated as 

1

1 )()(
)(









ii

ii
i xx

xfxf
xf         (2) 

Substituting Equation (2) in Equation (1) gives 

)()(

))((

1

1
1




 




ii

iii
ii xfxf

xxxf
xx         (3) 

The above equation is called the secant method.  This method now requires two initial 
guesses, but unlike the bisection method, the two initial guesses do not need to bracket the 
root of the equation.  The secant method is an open method and may or may not converge.  
However, when secant method converges, it will typically converge faster than the bisection 
method.  However, since the derivative is approximated as given by Equation (2), it typically 
converges slower than the Newton-Raphson method. 
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The secant method can also be derived from geometry, as shown in Figure 1.  Taking two 
initial guesses, 1ix  and ix , one draws a straight line between )( ixf  and )( 1ixf  passing 

through the x -axis at 1ix .  ABE and DCE are similar triangles.  

Hence 

DE

DC

AE

AB
  

11

1

1

)()(





 


 ii

i

ii

i

xx

xf

xx

xf
 

On rearranging, the secant method is given as 

)()(

))((

1

1
1




 




ii

iii
ii xfxf

xxxf
xx  

                      
                         Figure 1  Geometrical representation of the secant method. 
 
 
Example 1 

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats (Figure 2) for 
ABC commodes.  The floating ball has a specific gravity of 0.6 and a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is submerged when floating in water. 
The equation that gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423  xx  
Use the secant method of finding roots of equations to find the depth x  to which the ball is 
submerged under water. Conduct three iterations to estimate the root of the above equation.  
Find the absolute relative approximate error and the number of significant digits at least 
correct at the end of each iteration. 
 

f (x) 

f (xi) 

f (xi–1) 

    xi+1     xi–1     xi 
    x 

B 

  C 

A D E 
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Solution 

   423 10993.31650  x.xxf  

Let us assume the initial guesses of the root of   0xf  as 0201 .x   and 0500 .x  . 

                  
                 Figure 2   Floating ball problem. 
Iteration 1 
The estimate of the root is 

 1x  
  
   10

100
0









xfxf

xxxf
x  

     
   

   42
1

3
1

42
0

3
0

10
42

0
3
0

0
10993.3165.010993.3165.0

10993.3165.0













xxxx

xxxx
x  

                
    

     423423

423

10993.302.0165.002.010993.305.0165.005.0

02.005.010993.305.0165.005.0
05.0








   

                06461.0  
 
The absolute relative approximate error a  at the end of Iteration 1 is 

100
1

01 



x

xx
a  

100
06461.0

05.006461.0
      


  

       %62.22  
The number of significant digits at least correct is 0, as you need an absolute relative 
approximate error of 5% or less for one significant digit to be correct in your result. 
 
Iteration 2 

  
   01

011
12 xfxf

xxxf
xx




  

     
   

   42
0

3
0

42
1

3
1

01
42

1
3
1

1
10993.3165010993.31650

10993.31650
 










x.xx.x

xxx.x
x  
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     423423

423

10993.305.0165.005.010993.306461.0165.006461.0

05.006461.010993.306461.0165.006461.0
06461.0










 
06241.0  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

      100
06241.0

06461.006241.0



  

      %525.3   
The number of significant digits at least correct is 1, as you need an absolute relative 
approximate error of 5% or less. 
 
Iteration 3 

     
  
   12

122
23 xfxf

xxxf
xx




  

         
   

   42
1

3
1

42
2

3
2

12
42

2
3
2

2
10993.3165.010993.3165.0

10993.3165.0









xxxx

xxxx
x  

    
     423423

423

10993.306461.0165.006461.010993.306241.0165.006241.0

06461.006241.010993.306241.0165.006241.0
06241.0










         06238.0  
The absolute relative approximate error a  at the end of Iteration 3 is 

100
3

23 



x

xx
a  

      100
06238.0

06241.006238.0



  

                  %0595.0  
The number of significant digits at least correct is 2, as you need an absolute relative 
approximate error of 0.5% or less.  Table 1 shows the secant method calculations for the 
results from the above problem. 
 
              Table 1   Secant method results as a function of iterations. 

Iteration 
Number, i 1ix  ix  1ix  %a  

 1ixf  

1 
2 
3 
4 

0.02 
0.05 
0.06461 
0.06241 

0.05 
0.06461
0.06241
0.06238

0.06461
0.06241
0.06238
0.06238

   22.62 
   3.525 
   0.0595 

41064.3 

5109812.1   
7102852.3   

   9100252.2   
13108576.1   
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Chapter 03.06 
False-Position Method of Solving a Nonlinear 
Equation 
 
After reading this chapter, you should be able to 

1. follow the algorithm of the false-position method of solving a nonlinear equation, 
2. apply the false-position method to find roots of a nonlinear equation. 

 
Introduction 
In Chapter 03.03, the bisection method was described as one of the simple bracketing 
methods of solving a nonlinear equation of the general form 

0)( =xf                                                                                                                       (1) 

( )Uxf

Ux
rx

( )Lxf

Lx
O

( )xf

x

Exact root

 
Figure 1 False-Position Method 

 
The above nonlinear equation can be stated as finding the value of x such that Equation (1) is 
satisfied.  
In the bisection method, we identify proper values of Lx  (lower bound value) and Ux  (upper 
bound value) for the current bracket, such that 
  0)()( <UL xfxf .                                                                                                     (2) 
The next predicted/improved root rx  can be computed as the midpoint between Lx  and Ux  
as 
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2
UL

r
xx

x
+

=                                                                                                               (3) 

The new upper and lower bounds are then established, and the procedure is repeated until the 
convergence is achieved (such that the new lower and upper bounds are sufficiently close to 
each other). 
However, in the example shown in Figure 1, the bisection method may not be efficient 
because it does not take into consideration that )( Lxf  is much closer to the zero of the 
function )(xf  as compared to )( Uxf . In other words, the next predicted root rx  would be 
closer to Lx  (in the example as shown in Figure 1), than the mid-point between Lx  and Ux  .  
The false-position method takes advantage of this observation mathematically by drawing a 
secant from the function value at Lx  to the function value at Ux , and estimates the root as 
where it crosses the x-axis. 
 
False-Position Method 
Based on two similar triangles, shown in Figure 1, one gets 

Ur

U

Lr

L

xx
xf

xx
xf

−
−

=
−

− )(0)(0                                                                                                (4) 

From Equation (4), one obtains 
( ) ( ) ( ) ( )LUrULr xfxxxfxx −=−  

( ) ( ) ( ) ( ){ }ULrULLU xfxfxxfxxfx −=−  
The above equation can be solved to obtain the next predicted root mx  as 

( ) ( )
( ) ( )UL

ULLU
r xfxf

xfxxfx
x

−
−

=                                                      (5)                                                              

The above equation, through simple algebraic manipulations, can also be expressed as 
( )

( ) ( )








−
−

−=

UL

UL

U
Ur

xx
xfxf

xf
xx                               (6) 

or 
( )

( ) ( )








−
−

−=

LU

LU

L
Lr

xx
xfxf

xfxx                     (7) 

Observe the resemblance of Equations (6) and (7) to the secant method. 
 
False-Position Algorithm 

The steps to apply the false-position method to find the root of the equation ( ) 0=xf are as 
follows. 
1. Choose Lx and Ux  as two guesses for the root such that ( ) ( ) 0<UL xfxf , or in other words, 
( )xf  changes sign between Lx  and Ux . 
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2. Estimate the root, rx  of the equation ( ) 0=xf as  

( ) ( )
( ) ( )UL

ULLU
r xfxf

xfxxfx
x

−
−

=  

3. Now check the following 
If ( ) ( ) 0<rL xfxf , then the root lies between Lx  and rx ; then LL xx =  and rU xx = . 
If ( ) ( ) 0>rL xfxf , then the root lies between rx  and Ux ; then rL xx =  and UU xx = . 
If ( ) ( ) 0=rL xfxf , then the root is rx .  Stop the algorithm. 
4. Find the new estimate of the root 

( ) ( )
( ) ( )UL

ULLU
r xfxf

xfxxfx
x

−
−

=  

Find the absolute relative approximate error as 

100×
−

=∈ new
r

old
r

new
r

a x
xx

 

where 
new
rx = estimated root from present iteration 
old
rx = estimated root from previous iteration 

5. Compare the absolute relative approximate error a∈ with the pre-specified relative error 

tolerance s∈ . If sa >∈∈ , then go to step 3, else stop the algorithm. Note one should also 
check whether the number of iterations is more than the maximum number of iterations 
allowed. If so, one needs to terminate the algorithm and notify the user about it. 
Note that the false-position and bisection algorithms are quite similar. The only difference is 
the formula used to calculate the new estimate of the root rx  as shown in steps #2 and #4! 
 
Example 1 
You are working for “DOWN THE TOILET COMPANY” that makes floats for ABC 
commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5cm. You are 
asked to find the depth to which the ball is submerged when floating in water.  The equation 
that gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423 =×+− −xx  
Use the false-position method of finding roots of equations to find the depth x  to which the 
ball is submerged under water. Conduct three iterations to estimate the root of the above 
equation. Find the absolute relative approximate error at the end of each iteration, and the 
number of significant digits at least correct at the end of third iteration. 
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Figure 2   Floating ball problem. 

 

 
Solution 

From the physics of the problem, the ball would be submerged between 0=x  and Rx 2= ,  
where  
           ball,  theof radius=R  
that is 
           Rx 20 ≤≤  
           )055.0(20 ≤≤ x  
           11.00 ≤≤ x  
Let us assume 

11.0,0 == UL xx  
Check if the function changes sign between Lx  and Ux  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 4423

4423

10662.210993.311.0165.011.011.0

10993.310993.30165.000
−−

−−

×−=×+−==

×=×+−==

fxf

fxf

U

L  

Hence 
( ) ( ) ( ) ( ) ( )( ) 010662.210993.311.00 44 <×−×== −−ffxfxf UL  

Therefore, there is at least one root between Lx  and Ux , that is between 0 and 0.11. 
Iteration 1 
The estimate of the root is 

( ) ( )
( ) ( )

( )
( )

0660.0
10662.210993.3

10662.2010993.311.0
44

44

=
×−−×

×−×−××
=

−
−

=

−−

−−

UL

ULLU
r xfxf

xfxxfx
x

 

( ) ( )
( ) ( ) ( )

5

423

101944.3
10993.30660.0165.00660.0

0660.0

−

−

×−=

×+−=

= fxf r
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( ) ( ) ( ) ( ) ( )( ) 00660.00 <−+== ffxfxf rL  
Hence, the root is bracketed between Lx  and rx , that is, between 0 and 0.0660. So, the lower 
and upper limits of the new bracket are 0660.0,0 == UL xx , respectively. 
 
Iteration 2 
The estimate of the root is 

( ) ( )
( ) ( )

( )
( )

0611.0
101944.310993.3

101944.3010993.30660.0
54

54

=
×−−×

×−×−××
=

−
−

=

−−

−−

UL

ULLU
r xfxf

xfxxfx
x

 

The absolute relative approximate error for this iteration is  

%8100
0611.0

0660.00611.0
≅×

−
=∈a  

 
( ) ( )

( ) ( ) ( )
5

423

101320.1
10993.30611.0165.00611.0

0611.0

−

−

×=

×+−=

= fxf r

 

( ) ( ) ( ) ( ) ( )( ) 00611.00 >++== ffxfxf rL  
Hence, the lower and upper limits of the new bracket are 0660.0,0611.0 == UL xx , 
respectively. 
 
Iteration 3 
The estimate of the root is 

( ) ( )
( ) ( )

( )
( )

0624.0
101944.310132.1

101944.30611.010132.10660.0
55

55

=
×−−×

×−×−××
=

−
−

=

−−

−−

UL

ULLU
r xfxf

xfxxfx
x

 

The absolute relative approximate error for this iteration is  

%05.2100
0624.0

0611.00624.0
≅×

−
=∈a  

( ) 7101313.1 −×−=rxf  
( ) ( ) ( ) ( ) ( )( ) 00624.00611.0 <−+== ffxfxf rL  

Hence, the lower and upper limits of the new bracket are 0624.0,0611.0 == UL xx  
All iterations results are summarized in Table 1.  To find how many significant digits are at 
least correct in the last iterative value  
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m

m
a

−

−

×≤

×≤∈
2

2

105.005.2

105.0
 

387.1≤m  
The number of significant digits at least correct in the estimated root of 0.0624 at the end of 
3rd iteration is 1. 
 
Table 1 Root of ( ) 010993.3165.0 423 =×+−= −xxxf for false-position method. 

Iteration Lx  Ux  rx  %a∈  
( )mxf  

1 0.0000 0.1100 0.0660 ---- 5101944.3 −×−  
2 0.0000 0.0660 0.0611 8.00 5101320.1 −×−  
3 0.0611 0.0660 0.0624 2.05 7101313.1 −×−  

 
 
Example 2 

Find the root of ( ) ( ) ( ) 024 2 =+−= xxxf , using the initial guesses of 5.2−=Lx  and 
,0.1−=Ux and a pre-specified tolerance of %1.0=∈s . 

Solution 
The individual iterations are not shown for this example, but the results are summarized in 
Table 2.  It takes five iterations to meet the pre-specified tolerance. 
Table 2 Root of ( ) ( ) ( ) 024 2 =+−= xxxf for false-position method. 

Iteration Lx  Ux  ( )Lxf  ( )Uxf  rx  %a∈  ( )mxf  
1 -2.5 -1 -21.13 25.00 -1.813 N/A 6.319 
2 -2.5 -1.813 -21.13 6.319 -1.971 8.024 1.028 
3 -2.5 -1.971 -21.13 1.028 -1.996 1.229 0.1542 
4 -2.5 -1.996 -21.13 0.1542 -1.999 0.1828 0.02286 
5 -2.5 -1.999 -21.13 0.02286 -2.000 0.02706 0.003383 

To find how many significant digits are at least correct in the last iterative answer, 

m

m
a

−

−

×≤

×≤∈
2

2

105.002706.0

105.0
 

2666.3≤m  
Hence, at least 3 significant digits can be trusted to be accurate at the end of the fifth 
iteration. 

FALSE-POSITION METHOD OF SOLVING A NONLINEAR EQUATION 

Topic False-Position Method of Solving a Nonlinear Equation 
Summary Textbook Chapter of False-Position Method 
Major General Engineering 
Authors Duc Nguyen 
Date September 4, 2012 

 



 
 
 
 
 
Chapter 04.01 
Introduction 
 
 
 
 
 
After reading this chapter, you should be able to 
 

1. define what a matrix is. 
2. identify special types of matrices, and 
3. identify when two matrices are equal. 

 
What does a matrix look like? 
Matrices are everywhere.  If you have used a spreadsheet such as Excel or written numbers in 
a table, you have used a matrix.  Matrices make presentation of numbers clearer and make 
calculations easier to program.  Look at the matrix below about the sale of tires in a 
Blowoutr’us store – given by quarter and make of tires. 
 
 
                             Q1     Q2     Q3    Q4 

Copper
Michigan
Tirestone

    








6
5
25

     
16
10
20

     
7

15
3

    








27
25
2

 

 
If one wants to know how many Copper tires were sold in Quarter 4, we go along the row 
Copper and column Q4 and find that it is 27. 
 
So what is a matrix? 
A matrix is a rectangular array of elements.  The elements can be symbolic expressions 
or/and numbers.  Matrix ][A  is denoted by 



















=

mnmm

n

n

aaa

aaa
aaa

A

.......

.......

.......

][

21

22221

11211



 

Row i of ][A  has n  elements and is  

04.01.1 
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[ ]inii aaa ....2      1   
and column j  of ][A  has m  elements and is  





















mj

j

j

a

a
a



2

1

 

Each matrix has rows and columns and this defines the size of the matrix.  If a matrix ][A  
has m  rows and n  columns, the size of the matrix is denoted by nm× .  The matrix ][A  may 
also be denoted by nmA ×][  to show that ][A  is a matrix with m  rows and n  columns. 
 
Each entry in the matrix is called the entry or element of the matrix and is denoted by ija  
where i  is the row number and j  is the column number of the element. 
 
The matrix for the tire sales example could be denoted by the matrix [A] as 

 















=

277166
2515105
232025

][A . 

There are 3 rows and 4 columns, so the size of the matrix is 43× .  In the above ][A  matrix, 
2734 =a . 

 
What are the special types of matrices? 
Vector: A vector is a matrix that has only one row or one column.  There are two types of 
vectors – row vectors and column vectors. 
 
Row Vector:  

If a matrix ][B  has one row, it is called a row vector ][][ 21 nbbbB = and n  is the 
dimension of the row vector. 
 
Example 1 
Give an example of a row vector. 
Solution 

]0232025[][ =B  
is an example of a row vector of dimension 5. 
 
Column vector: 

If a matrix ][C  has one column, it is called a column vector 
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=

mc

c

C




1

][   

and m  is the dimension of the vector. 
 
Example 2 
Give an example of a column vector. 
Solution 
















=

6
5
25

][C   

is an example of  a column vector of dimension 3. 
 
Submatrix:   

If some row(s) or/and column(s) of a matrix ][A  are deleted (no rows or columns may be 
deleted), the remaining matrix is called a submatrix of ][A . 
 
Example 3 
Find some of the submatrices of the matrix 









−

=
213
264

][A  

Solution 

[ ] [ ] 















−








− 2

2
,4,264,

13
64

,
213
264

 

are some of the submatrices of ][A . Can you find other submatrices of ][A ? 
 
Square matrix:   

If the number of rows m  of a matrix is equal to the number of columns n  of a matrix ][A , 
that is, nm = , then ][A  is called a square matrix.  The entries nnaaa ,...,, 2211  are called the 
diagonal elements of a square matrix.  Sometimes the diagonal of the matrix is also called the 
principal or main of the matrix. 
 
Example 4 
Give an example of a square matrix. 
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Solution 
















=

7156
15105
32025

][A   

is a square matrix as it has the same number of rows and columns, that is, 3.  The diagonal 
elements of ][A  are 7,10,25 332211 === aaa . 
 
Upper triangular matrix:   

A nn×  matrix for which jiaij >= ,0  for all ji, is called an upper triangular matrix.  That 
is, all the elements below the diagonal entries are zero. 
 
Example 5 
Give an example of an upper triangular matrix. 
Solution 
















−
−

=
1500500

6001.00
0710

][A    

is an upper triangular matrix. 
 
Lower triangular matrix:   

A nn×  matrix for which ijaij >= ,0  for all ji, is called a lower triangular matrix.  That is, 
all the elements above the diagonal entries are zero. 
  
Example 6  
Give an example of a lower triangular matrix. 
Solution 
















=

15.26.0
013.0
001

][A    

is a lower triangular matrix.   
 
Diagonal matrix:   
A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that 
is, only the diagonal entries of the square matrix can be non-zero,  ( jiaij ≠= ,0 ). 
 
Example 7  
Give examples of a diagonal matrix. 



Introduction                                                                                                                   04.01.5 
 
 
Solution 
















=

500
01.20
003

][A  

is a diagonal matrix. 
Any or all the diagonal entries of a diagonal matrix can be zero.  For example 
















=

000
01.20
003

][A  

is also a diagonal matrix. 
 
Identity matrix:   
A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, 
( jiaij ≠= ,0 for all ji,  and 1=iia  for all i ). 
 
Example 8 
Give an example of an identity matrix. 
Solution 



















=

1000
0100
0010
0001

][A   

is an identity matrix. 
 
Zero matrix:   

A matrix whose all entries are zero is called a zero matrix, ( 0=ija  for all i  and j ). 
 
Example 9  
Give examples of a zero matrix. 
Solution 
















=

000
000
000

][A  









=

0    0    0
 0    0    0

   [B]  
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=

0
0
0

    
000
000
000

][C  

[ ]000][ =D  
are all examples of a zero matrix. 
 
Tridiagonal matrices:   
A tridiagonal matrix is a square matrix in which all elements not on the following are zero - 
the major diagonal, the diagonal above the major diagonal, and the diagonal below the major 
diagonal. 
 
Example 10 
Give an example of a tridiagonal matrix. 
Solution 



















=

6300
2500
0932
0042

][A   

is a tridiagonal matrix. 
 
Do non-square matrices have diagonal entries? 

Yes, for a nm×  matrix ][A  , the diagonal entries are kkkk aaaa ,...,, 1,12211 −−  where 
},min{ nmk = . 

 
Example 11 
What are the diagonal entries of 



















=

8.76.5
2.39.2

76
52.3

][A  

Solution 

The diagonal elements of ][A  are .7 and 2.3 2211 == aa  
 
Diagonally Dominant Matrix:   

A nn×  square matrix ][A  is a diagonally dominant matrix if  

 ∑
≠
=

≥
n

ji
j

ijii aa
1

||  for ni ,.....,2,1=  and  
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 ∑
≠
=

>
n

ji
j

ijii aa
1

||  for at least one i ,  

that is, for each row, the absolute value of the diagonal element is greater than or equal to the 
sum of the absolute values of the rest of the elements of that row, and that the inequality is 
strictly greater than for at least one row.  Diagonally dominant matrices are important in 
ensuring convergence in iterative schemes of solving simultaneous linear equations. 
 
Example 12 
Give examples of diagonally dominant matrices and not diagonally dominant matrices. 
Solution  
















−−=
623
242

7615
][A   

is a diagonally dominant matrix as 
 

13761515 131211 =+=+≥== aaa  

42244 232122 =−+=+≥=−= aaa  

52366 323133 =+=+≥== aaa  
 
and for at least one row, that is Rows 1 and 3 in this case, the inequality is a strictly greater 
than inequality. 
 

















−
−

−
=

001.523
242
9615

][B  

is a diagonally dominant matrix as 
 
 15961515 131211 =+=+≥=−= bbb  

 42244 232122 =+=+≥=−= bbb  

 523001.5001.5 323133 =−+=+≥== bbb  
The inequalities are satisfied for all rows and it is satisfied strictly greater than for at least 
one row (in this case it is Row 3). 

[ ]















=

112144
1864
1525

C   

is not diagonally dominant as 
6516488 232122 =+=+≤== ccc  
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When are two matrices considered to be equal? 
Two matrices [A] and [B] are equal if the size of [A] and [B] is the same (number of rows and 
columns of [A] are same as that of [B]) and ijij ba =  for all i and j. 
 
Example 13 
What would make  









=

76
32

][A  

to be equal to  









=

22

11

6
3

][
b

b
B  

Solution 

The two matrices ][A and ][B  ould be equal if 211 =b  and 722 =b . 
 
 
Key Terms: 
Matrix 
Vector 
Submatrix 
Square matrix 
Equal matrices 
Zero matrix 
Identity matrix 
Diagonal matrix 
Upper triangular matrix 
Lower triangular matrix 
Tri-diagonal matrix 
Diagonally dominant matrix 
 



 
 
 
 
 
Chapter 04.02 
Vectors 

 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. define  a vector, 
2. add and subtract vectors, 
3. find linear combinations of vectors and their relationship to a set of equations, 
4. explain what it means to have a linearly independent set of vectors, and 
5. find the rank of a set of vectors. 

 
 
What is a vector? 

A vector is a collection of numbers in a definite order.  If it is a collection of n  numbers, it is 
called a n -dimensional vector.  So the vector A



 given by 

 


















=

na

a
a

A


 2

1

 
is a n -dimensional column vector with n  components, naaa ,......,, 21 .  The above is a 

column vector.  A row vector ][B  is of the form ],....,,[ 21 nbbbB =


 where B


 is a n -
dimensional row vector with n  components nbbb ,....,, 21 . 
 
Example 1 
Give an example of a 3-dimensional column vector. 
Solution 

Assume a point in space is given by its ),,( zyx  coordinates.  Then if the value of 
5,2,3 === zyx , the column vector corresponding to the location of the points is 
















=

















5
2
3

z
y
x

. 

04.02.1 
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When are two vectors equal? 

Two vectors A


 and B


 are equal if they are of the same dimension and if their corresponding 
components are equal. 
Given 



















=

na

a
a

A


 2

1

  

and  



















=

nb

b
b

B


 2

1

 

then BA


=  if niba ii ,......,2,1, == . 
 
Example 2 

What are the values of the unknown components in B


 if  



















=

1
4
3
2

A


  

and  



















=

4

1

4
3

b

b

B


  

and BA


= . 
Solution 

   1 ,2 41 == bb  
 
How do you add two vectors? 
Two vectors can be added only if they are of the same dimension and the addition is given by 
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+



















=+

nn b

b
b

a

a
a

BA


2

1

2

1

][][  

               



















+

+
+

=

nn ba

ba
ba



22

11

 

 
Example 3 
Add the two vectors 



















=

1
4
3
2

A


  

and 


















−

=

7
3
2

5

B


 

Solution 


















−

+



















=+

7
3
2

5

1
4
3
2

BA


 

          



















+
+
−
+

=

71
34
23
52

 

          



















=

8
7
1
7

 

 



04.02.4                     Chapter 04.02 
 
 
 
Example 4 
A store sells three brands of tires: Tirestone, Michigan and Copper.  In quarter 1, the sales are 
given by the column vector 
















=

6
5
25

1A


 

where the rows represent the three brands of tires sold – Tirestone, Michigan and Copper 
respectively.  In quarter 2, the sales are given by 
















=

6
10
20

2A


 

What is the total sale of each brand of tire in the first half of the year? 
Solution 
The total sales would be given by 

21 AAC


+=  

     















+
















=

6
10
20

6
5
25

 

     
















+
+
+

=
66

105
2025

 

     















=

12
15
45

 

So the number of Tirestone tires sold is 45, Michigan is 15 and Copper is 12 in the first half 
of the year. 
 
What is a null vector? 
A null vector (also called zero vector) is where all the components of the vector are zero. 
 
Example 5 
Give an example of a null vector or zero vector. 
Solution 
The vector  
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0
0
0
0

 

is an example of a zero or null vector. 
 
What is a unit vector? 

A unit vector U


 is defined as 



















=

nu

u
u

U


 2

1

  

where  
122

3
2
2

2
1 =++++ nuuuu   

 
Example 6 
Give examples of 3-dimensional unit column vectors. 
Solution 
Examples include 

 ,
0
1
0

,

0
2

1
2

1

,
0
0
1

,

3
1
3

1
3

1













































































etc. 

 
How do you multiply a vector by a scalar? 

If k  is a scalar and A


 is a n -dimensional vector, then 



















=

na

a
a

kAk


 2

1

 

       



















=

nka

ka
ka



2

1
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Example 7  

What is A


2  if 

 















=

5
20
25

A


 

Solution 
















=

5
20
25

22A


  

               
















×
×
×

=
52
202
252

 

       















=

10
40
50

 

 
Example 8  
A store sells three brands of tires: Tirestone, Michigan and Copper.  In quarter 1, the sales are 
given by the column vector 

 















=

6
25
25

A


 

If the goal is to increase the sales of all tires by at least 25% in the next quarter, how many of 
each brand should be sold? 
Solution 

Since the goal is to increase the sales by 25%, one would multiply the A


 vector by 1.25, 
















=

6
25
25

25.1B


 

   















=

5.7
25.31
25.31

 

Since the number of tires must be an integer, we can say that the goal of sales is 
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=

8
32
32

B


 

 
What do you mean by a linear combination of vectors? 
Given  

mAAA


,......,, 21  
as m vectors of same dimension n, and if mkkk ,...,, 21  are scalars, then  

mm AkAkAk


+++ .......2211  
is a linear combination of the m  vectors. 
 
Example 9 
Find the linear combinations 
a) BA



−  and 
b) CBA



3−+  
where 
















=
















=
















=

2
1

10
,

2
1
1

,
6
3
2

CBA


 

Solution 

a) 















−
















=−

2
1
1

6
3
2

BA


 

              
















−
−
−

=
26
13
12

 

              















=

4
2
1

 

b) 















−
















+
















=−+

2
1

10
3

2
1
1

6
3
2

3CBA


   

                      
















−+
−+
−+

=
626
313
3012
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−
=

2
1
27

 

 
What do you mean by vectors being linearly independent? 

A set of vectors mAAA






,,, 21  are considered to be linearly independent if  

0.......2211




=+++ mm AkAkAk  

has only one solution of 
0......21 ==== mkkk  

 
Example 10 
Are the three vectors  
 
















=
















=
















=

1
1
1

,
12
8
5

,
144
64
25

321 AAA


  

linearly independent? 
Solution 
Writing the linear combination of the three vectors 
















=
















+
















+

















0
0
0

1
1
1

12
8
5

144
64
25

321 kkk  

gives 
















=

















++
++
++

0
0
0

12144
864
525

321

321

321

kkk
kkk
kkk

 

The above equations have only one solution, 0321 === kkk .  However, how do we show 
that this is the only solution?  This is shown below. 
The above equations are  
 0525 321 =++ kkk        (1) 
 0864 321 =++ kkk        (2) 
 012144 321 =++ kkk        (3) 
Subtracting Eqn (1) from Eqn (2) gives 
 0339 21 =+ kk  
            12 13kk −=         (4) 
Multiplying Eqn (1) by 8 and subtracting it from Eqn (2) that is first multiplied by 5 gives 
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 03120 31 =− kk  
             13 40kk =         (5) 
Remember we found Eqn (4) and Eqn (5) just from Eqns (1) and (2). 
Substitution of Eqns (4) and (5) in Eqn (3) for 1k  and 2k  gives 
 040)13(12144 111 =+−+ kkk   
 028 1 =k  
 01 =k  
This means that 1k  has to be zero, and coupled with (4) and (5), 2k  and 3k  are also zero.  So 
the only solution is 0321 === kkk .  The three vectors hence are linearly independent. 
 
Example 11 
Are the three vectors 

 















=
















=
















=

24
14
6

,
7
5
2

,
5
2
1

321 AAA


 

linearly independent? 
Solution 
By inspection, 

213 22 AAA


+=  
or 

022 321




=+−− AAA  
So the linear combination 

0332211



=++ AkAkAk  
has a non-zero solution 

1,2,2 321 =−=−= kkk  
Hence, the set of vectors is linearly dependent. 
What if I cannot prove by inspection, what do I do?  Put the linear combination of three 
vectors equal to the zero vector, 

 















=
















+
















+

















0
0
0

24
14
6

7
5
2

5
2
1

321 kkk  

 to give 
 062 321 =++ kkk        (1) 
 01452 321 =++ kkk        (2) 
 02475 321 =++ kkk        (3) 
Multiplying Eqn (1) by 2 and subtracting from Eqn (2) gives 
 02 32 =+ kk  
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            32 2kk −=         (4) 
Multiplying Eqn (1) by 2.5 and subtracting from Eqn (2) gives 
 05.0 31 =−− kk  
             31 2kk −=         (5) 
Remember we found Eqn (4) and Eqn (5) just from Eqns (1) and (2). 
Substitute Eqn (4) and (5) in Eqn (3) for 1k  and 2k  gives 
 ( ) ( ) 0242725 333 =+−+− kkk  
 0241410 333 =+−− kkk  
 00 =  
This means any values satisfying Eqns (4) and (5) will satisfy Eqns (1), (2) and (3) 
simultaneously. 
For example, chose  
 63 =k , then 
 122 −=k  from Eqn (4), and 
  121 −=k  from Eqn (5). 
Hence we have a nontrivial solution of [ ] [ ]61212321 −−=kkk .  This implies the 
three given vectors are linearly dependent.  Can you find another nontrivial solution? 
 
What about the following three vectors? 

 
















































25
14
6

,
7
5
2

,
5
2
1

 

Are they linearly dependent or linearly independent?  
Note that the only difference between this set of vectors and the previous one is the third 
entry in the third vector.  Hence, equations (4) and (5) are still valid.  What conclusion do 
you draw when you plug in equations (4) and (5) in the third equation: 02575 321 =++ kkk ?  
What has changed? 
 
Example 12 
Are the three vectors 

 















=
















=
















=

2
1
1

,
13
8
5

,
89
64
25

321 AAA


 

linearly independent? 
Solution 
Writing the linear combination of the three vectors and equating to zero vector 
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=
















+
















+

















0
0
0

2
1
1

13
8
5

89
64
25

321 kkk  

gives 
















=

















++
++
++

0
0
0

21389
864
525

321

321

321

kkk
kkk
kkk

 

In addition to 0321 === kkk , one can find other solutions for which 321 ,, kkk are not equal 
to zero.  For example, 40,13,1 321 =−== kkk  is also a solution as 
















=
















+
















−

















0
0
0

2
1
1

40
13
8
5

13
89
64
25

1  

Hence 321 ,, AAA


 are linearly dependent. 
 
What do you mean by the rank of a set of vectors? 

From a set of n -dimensional vectors, the maximum number of linearly independent vectors 
in the set is called the rank of the set of vectors.  Note that the rank of the vectors can never 
be greater than the vectors dimension. 
 
Example 13 
What is the rank of  
















=
















=
















=

1
1
1

,
12
8
5

,
144
64
25

321 AAA


? 

Solution 

Since we found in Example 2.10 that 321 ,, AAA


 are linearly independent, the rank of the set 

of vectors 321 ,, AAA


 is 3.  If we were given another vector 4A


, the rank of the set of the 

vectors 4321 ,,, AAAA


 would still be 3 as the rank of a set of vectors is always less than or 

equal to the dimension of the vectors and that at least 321 ,, AAA


 are linearly independent. 
 
Example 14 
What is the rank of  

 















=
















=
















=

2
1
1

,
13
8
5

,
89
64
25

321 AAA


? 
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Solution 

In Example 2.12, we found that 321 ,, AAA


 are linearly dependent, the rank of 321 ,, AAA


 is 
hence not 3, and is less than 3.  Is it 2?  Let us choose two of the three vectors 
















=
















=

13
8
5

,
89
64
25

21 AA


 

Linear combination of 1A


 and 2A


 equal to zero has only one solution – the trivial solution.  
Therefore, the rank is 2. 
 
Example 15 
What is the rank of 

 















=
















=
















=

5
3
3

,
4
2
2

,
2
1
1

321 AAA


? 

Solution 
From inspection, 

12 2AA


=
→

,  
that implies 

.002 321



=+− AAA  
Hence  

.0332211



=++ AkAkAk  
has a nontrivial solution. 
So 321 ,, AAA



are linearly dependent, and hence the rank of the three vectors is not 3.  Since 

 12 2AA


= ,  

21 and AA


 are linearly dependent, but 
 .03311



=+ AkAk  

has trivial solution as the only solution.  So 31 and AA


are linearly independent.  The rank of 
the above three vectors is 2. 
 
Prove that if a set of vectors contains the null vector, the set of vectors is linearly 
dependent. 
Let mAAA



,,........., 21  be a set of n -dimensional vectors, then 

02211








=+++ mm AkAkAk  

is a linear combination of the m vectors.  Then assuming if 1A


 is the zero or null vector, any 
value of 1k  coupled with 032 ==== mkkk  will satisfy the above equation.  Hence, the 
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set of vectors is linearly dependent as more than one solution exists. 
 
Prove that if a set of m vectors is linearly independent, then a subset of the m vectors 
also has to be linearly independent. 
Let this subset of vectors be 
 apaa AAA







,,, 21  
where mp < . 
Then if this subset of vectors is linearly dependent, the linear combination 

02211








=+++ appaa AkAkAk  
has a non-trivial solution. 
So  

00.......0 )1(2211








=++++++ + ampaappaa AAAkAkAk  

also has a non-trivial solution too, where ( ) ampa AA






,,1+ are the rest of the )( pm −  vectors.  
However, this is a contradiction.  Therefore, a subset of linearly independent vectors cannot 
be linearly dependent. 
 
Prove that if a set of vectors is linearly dependent, then at least one vector can be 
written as a linear combination of others. 

Let mAAA






,,, 21  be linearly dependent set of vectors, then there exists a set of scalars 

mkk ,,1   not all of which are zero for the linear combination equation 

02211








=+++ mm AkAkAk . 
Let pk be one of the non-zero values of  miki ,,1, = , that is, 0≠pk , then  

.1
1

1
1

2
2

m
p

m
p

p

p
p

p

p

p
p A

k
kA

k
k

A
k

k
A

k
kA











−−−−−−= +
+

−
−  

and that proves the theorem. 
 
Prove that if the dimension of a set of vectors is less than the number of vectors in the 
set, then the set of vectors is linearly dependent. 
Can you prove it? 
 
How can vectors be used to write simultaneous linear equations? 

If a set of m  simultaneous linear equations with n  unknowns is written as 
 11111 cxaxa nn =++  
 22121 cxaxa nn =++  

       




 

 nnmnm cxaxa =++11  
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where 
 nxxx ,,, 21  are the unknowns, then in the vector notation they can be written as  

CAxAxAx nn







=+++ 2211  
where 
















=

1

11

1

ma

a
A 



 

where 
















=

1

11

1

ma

a
A 



 
















=

2

12

2

ma

a
A 



 
















=

mn

n

n

a

a
A 



1

 
















=

mc

c
C 



1

1  

 
The problem now becomes whether you can find the scalars nxxx ,.....,, 21  such that the linear 
combination  

nn AxAx


++ ..........11  

is equal to the C


, that is 
CAxAx nn



=++ ..........11  
 
Example 16 
Write 

8.106525 321 =++ xxx  
2.177864 321 =++ xxx  

2.27912144 321 =++ xxx  
as a linear combination of set of vectors equal to another vector. 
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Solution  
















=

















++
++
++

2.279
2.177
8.106

12144
864
525

321

321

321

xxx
xxx
xxx

 
















=
















+
















+

















2.279
2.177
8.106

1
1
1

12
8
5

144
64
25

321 xxx  

 
What is the definition of the dot product of two vectors? 
Let [ ]naaaA ,,, 21 



=  and [ ]nbbbB ,,, 21 



=  be two n-dimensional vectors.  Then the dot 

product of the two vectors A


 and B


 is defined as 

∑
=

=+++=⋅
n

i
iinn babababaBA

1
2211 



 

A dot product is also called an inner product. 
 
Example 17 

Find the dot product of the two vectors A


 = [4, 1, 2, 3] and B


 = [3, 1, 7, 2]. 
Solution 

]2,7,1,3[.]3,2,1,4[=⋅BA


 
         = (4)(3)+(1)(1)+(2)(7)+(3)(2) 
         = 33 

 
Example 18 
A product line needs three types of rubber as given in the table below. 

Rubber Type Weight (lbs) Cost per pound ($) 
A 
B 
C 

200 
250 
310 

20.23 
30.56 
29.12 

 
Use the definition of a dot product to find the total price of the rubber needed. 
Solution 
The weight vector is given by  

]310,250,200[=W


 
and the cost vector is given by  

]12.29,56.30,23.20[=C


.  
The total cost of the rubber would be the dot product of W



 and C


. 
]12.29,56.30,23.20[]310,250,200[ ⋅=⋅CW
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          )12.29)(310()56.30)(250()23.20)(200( ++=  
          2.902776404046 ++=  
          20.20713$=  
 

Key Terms: 
Vector 
Addition of vectors 
Rank 
Dot Product 
Subtraction of vectors 
Unit vector 
Scalar multiplication of vectors 
Null vector 
Linear combination of vectors 
Linearly independent vectors 
 



 
 
 
 
 
Chapter 04.03 
Binary Matrix Operations 
 
 
 
 
 
After reading this chapter, you should be able to 

1. add, subtract, and multiply matrices, and 
2. apply rules of binary operations on matrices. 

 
How do you add two matrices? 

Two matrices ][A  and ][B  can be added only if they are the same size. The addition is then 
shown as  

][][][ BAC +=   
where  

ijijij bac +=  
 
Example 1 
Add  the following two matrices. 

 







=

721
325

][A  






 −
=

1953
276

][B  

Solution 
][][][ BAC +=  

      






 −
+








=

1953
276

721
325

 

     







+++
−++

=
1975231
237265

 

     







=

2674
1911

 

 
Example 2 
Blowout r’us store has two store locations A  and B , and their sales of tires are given by 
make (in rows) and quarters (in columns) as shown below. 

04.03.1 
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=

277166
2515105
232025

][A  
















=

20714
211563
04520

][B  

where the rows represent the sale of Tirestone, Michigan and Copper tires respectively and 
the columns represent the quarter number: 1, 2, 3 and 4.  What are the total tire sales for the 
two locations by make and quarter? 
Solution 

][][][ BAC +=  

       =
















277166
2515105
232025

+
















20714
211563
04520

 

       =
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
















++++
++++
++++

20277711646
2125151561035
02435202025

 

      















=

47141710
4630168
272545

 

So if one wants to know the total number of Copper tires sold in quarter 4 at the two 
locations, we would look at Row 3 – Column 4 to give .4734 =c  
 
How do you subtract two matrices? 

Two matrices ][A  and ][B  can be subtracted only if they are the same size. The subtraction 
is then given by  

][][][ BAD −=  
Where 

ijijij bad −=  
 
Example 3 

Subtract matrix ][B  from matrix ][A . 









=

721
325

][A  








 −
=

1953
276

][B  
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Solution 

][][][ BAD −=  

      






 −
−








=

1953
276

721
325

 

      







−−−
−−−−

=
)197()52()31(
))2(3()72()65(

 

      







−−−

−−
=

1232
551

 

 
Example 4 
Blowout r’us has two store locations A  and B  and their sales of tires are given by make (in 
rows) and quarters (in columns) as shown below. 
















=

277166
2515105
232025

][A  
















=

20714
211563
04520

][B  

where the rows represent the sale of Tirestone, Michigan and Copper tires respectively and 
the columns represent the quarter number: 1, 2, 3, and 4.  How many more tires did store A  
sell than store B  of each brand in each quarter? 
Solution 

][][][ BAD −=  

 =















−

















20714
211563
04520

277166
2515105
232025

 

















−−−−
−−−−
−−−−

=
20277711646
2125151561035
02435202025

 















 −
=

70152
4042
21155

 

So if you want to know how many more Copper tires were sold in quarter 4 in store A  than 
store B , 734 =d .  Note that 113 −=d  implies that store A  sold 1 less Michigan tire than 
store B  in quarter 3. 
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How do I multiply two matrices? 

Two matrices ][A  and ][B  can be multiplied only if the number of columns of ][A  is equal 
to the number of rows of ][B  to give 

nppmnm BAC ××× = ][][][  
If  ][A  is a pm×  matrix and ][B  is a np×  matrix, the resulting matrix ][C  is a nm×  
matrix. 
So how does one calculate the elements of ][C  matrix? 

∑
=

=
p

k
kjikij bac

1

 

    pjipjiji bababa +++= 2211  
for each mi  ,,2 ,1 = and nj  ,,2 ,1 = . 
To put it in simpler terms, the thi  row and thj  column of the ][C  matrix in ]][[][ BAC =  is 
calculated by multiplying the thi  row of ][A  by the thj  column of ][B , that is, 

[ ]

.

2

1

21

pj ip2ji21ji1

pj

j

j

ipiiij

ba ........ b a   b a      

b

b
b

aaac

+++=























=





 

           ∑
=

=
p

k
kjikba

1

 

 
Example 5 
Given 









=

721
325

][A  

















−
−
−

=
109
85
23

][B  

Find 
[ ] [ ][ ]BAC =  

Solution 

12c can be found by multiplying the first row of ][A  by the second column of ][B , 

[ ]
















−
−
−

=
10
8
2

32512c  
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      )10)(3()8)(2()2)(5( −+−+−=  
      56−=  

Similarly, one can find the other elements of ][C  to give 









−
−

=
8876
5652

][C  

Example 6 
Blowout r’us store location A and the sales of tires are given by make (in rows) and quarters 
(in columns) as shown below 
















=

277166
2515105
232025

][A  

where the rows represent the sale of Tirestone, Michigan and Copper tires respectively and 
the columns represent the quarter number: 1, 2, 3, and 4.  Find the per quarter sales of store 
A  if the following are the prices of each tire. 
Tirestone = $33.25 
Michigan = $40.19 
Copper = $25.03 
Solution 
The answer is given by multiplying the price matrix by the quantity of sales of store A .  The 
price matrix is [ ]03.2519.4025.33 , so the per quarter sales of store A  would be given by 

[ ]















=

277166
2515105
232025

 03.2519.4025.33][C  

∑
=

=
3

1k
kjikij bac  

∑
=

=
3

1
1111

k
kkbac  

           311321121111 bababa ++=  
                 ( )( ) ( )( ) ( )( )603.25519.402525.33 ++=  

     38.1182$=           
Similarly 

06.1747$
81.877$

38.1467$

14

13

12

=
=
=

c
c
c

 

Therefore, each quarter sales of store A  in dollars is given by the four columns of the row 
vector  

[ ] [ ]06.174781.87738.146738.1182=C  
Remember since we are multiplying a 1×3 matrix by a 3×4 matrix, the resulting matrix is a 
1×4 matrix. 
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What is the scalar multiplication of a matrix? 

If ][A  is a nm×  matrix and k  is a real number, then the multiplication ][A  by a scalar k  is 
another nm×  matrix ][B , where  

ijij akb =  for all i, j. 
 
Example 7 
Let   









=

615
231.2

][A  

Find ][2 A  
Solution 









=

615
231.2

2][2 A  

          







×××
×××

=
621252
22321.22

 

          







=

12210
462.4

 

 
What is a linear combination of matrices? 

If ][],.....,[],[ 21 pAAA  are matrices of the same size and pkkk ,.....,, 21  are scalars, then  
][........][][ 2211 pp AkAkAk +++  

is called a linear combination of ][][][ 21 pA,...,A,A . 
 
Example 8 

If 







=








=








=

65.33
22.20

][,
615
231.2

][,
123
265

][ 321 AAA  

find 
][5.0][2][ 321 AAA −+  

Solution 

][5.0][2][ 321 AAA −+  









−








+








=

65.33
22.20

5.0
615
231.2

2
123
265

 









−








+








=

375.15.1
11.10

12210
462.4

123
265

 









=

1025.25.11
59.102.9
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What are some of the rules of binary matrix operations? 
Commutative law of addition 
If ][A  and ][B  are nm×  matrices, then 

][][][][ ABBA +=+  
 
Associative law of addition 

If [A], [B] and [C] are all nm×  matrices, then 
( ) ( ) ][][][][][][ CBACBA ++=++   

 
Associative law of multiplication 

If ][A , ][B  and ][C  are rppnnm ×××  and  ,  size matrices, respectively, then 
( ) ( ) ][]][[]][[][ CBACBA =  

and the resulting matrix size on both sides of the equation is .rm×  
 
Distributive law 

If ][A  and ][B  are nm×  size matrices, and ][C  and ][D  are pn×  size matrices 
( ) ]][[]][[][][][ DACADCA +=+  

( ) ]][[]][[][][][ CBCACBA +=+  
and the resulting matrix size on both sides of the equation is .pm×  
 
Example 9 
Illustrate the associative law of multiplication of matrices using  









=








=
















=

53
12

][,
69
52

][,
20
53
21

][ CBA  

Solution 

]][[ CB 















=

53
12

69
52

 

          







=

3936
2719

 

























=

3936
2719

20
53
21

])][]([[ CBA  

                                















=

7872
276237
10591
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=

69
52

20
53
21

]][[ BA  

           















=

1218
4551
1720

 

























=

53
12

1218
4551
1720

]])[][([ CBA  

                    















=

7872
276237
10591

 

The above illustrates the associative law of multiplication of matrices. 
 
Is [A][B] = [B][A]? 

If ][A ][B  exists, number of columns of ][A  has to be same as the number of rows of ][B  
and if ]][[ AB  exists, number of columns of ][B  has to be same as the number of rows of 

][A .  Now for ]][[]][[ ABBA = , the resulting matrix from ]][[ BA  and ]][[ AB  has to be of the 
same size.  This is only possible if ][A  and ][B  are square and are of the same size.  Even 
then in general ]][[]][[ ABBA ≠  
 
 
Example 10 
Determine if  

]][[]][[ ABBA =  
 for the following matrices  








−
=








=

51
23

][,
52
36

][ BA  

Solution 

]][[ BA  






−








=

51
23

52
36

 

             = 







−
−

291
2715

 

]][[ AB 














−
=

52
36

51
23
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−
=

2816
114

 

]][[]][[ ABBA ≠  
 
Key Terms: 
Addition of matrices 
Subtraction of matrices 
Multiplication of matrices 
Scalar Product of matrices 
Linear Combination of Matrices 
Rules of Binary Matrix Operation 
  



 
 
 
 
 
Chapter 04.04 
Unary Matrix Operations 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. know what unary operations are, 
2. find the transpose of a square matrix and its relationship to symmetric matrices, 
3. find the trace of a matrix, and 
4. find the determinant of a matrix by the cofactor method. 

 
What is the transpose of a matrix? 

Let ][A  be a nm×  matrix.  Then ][B  is the transpose of the ][A  if ijji ab =  for all i  and j .  

That is, the thi  row and the thj  column element of ][A  is the thj  row and thi  column 
element of ][B .  Note, ][B  would be a mn×  matrix.  The transpose of ][A  is denoted by 

T][A . 
 
Example 1 
Find the transpose of  
















=

277166
2515105
232025

][A    

Solution 

The transpose of ][A  is 

[ ]


















=

27252
7153

161020
6525

TA  

Note, the transpose of a row vector is a column vector and the transpose of a column vector 
is a row vector. 
Also, note that the transpose of a transpose of a matrix is the matrix itself, that is, 
[ ]( ) [ ]AA =

TT .  Also, ( ) ( ) TTTTT ; cAcABABA =+=+ . 

04.04.1 
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What is a symmetric matrix?   

A square matrix ][A  with real elements where jiij aa =  for ni ,...,2,1=  and nj ,...,2,1=  is 

called a symmetric matrix.  This is same as saying that if T][][ AA = , then T][A  is a 
symmetric matrix. 
 
Example 2 
Give an example of a symmetric matrix. 
Solution 
















=

3.986
85.212.3
62.32.21

][A  

is a symmetric matrix as 623 31132112 ==== a, a.aa  and 83223 == aa . 
 
What is a skew-symmetric matrix? 

A nn×  matrix is skew symmetric if jiij aa −=  for ni ,...,1=  and nj ,...,1= .  This is same as 

 [ ] [ ] .TAA −=  
 
Example 3 
Give an example of a skew-symmetric matrix. 
Solution 

















−
−−
052
501

210
 

is skew-symmetric as 
5 ;2;1 322331132112 −=−==−==−=   a  a  a  a  a  a .  Since iiii aa −=  only if 0=iia , all 

the diagonal elements of a skew-symmetric matrix have to be zero. 
 
What is the trace of a matrix?  

The trace of a nn×  matrix ][A  is the sum of the diagonal entries of ][A , that is,  

    [ ] ∑
=

=
n

i
iiaA

1
tr  

 
Example 4 
Find the trace of 
















−=

623
242
7615

][A  
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Solution 

[ ] ∑
=

=
3

1
tr

i
iiaA  

        )6()4()15( +−+=  
        17=  

 
Example 5 
The sales of tires are given by make (rows) and quarters (columns) for Blowout r’us store 
location A , as shown below. 
















=

277166
2515105
232025

][A  

where the rows represent the sale of Tirestone, Michigan and Copper tires, and the columns 
represent the quarter number 1, 2, 3, 4. 
Find the total yearly revenue of store A  if the prices of tires vary by quarters as follows. 
















=

95.2203.2702.2203.25
23.3803.4102.3819.40
05.3002.3501.3025.33

][B  

where the rows represent the cost of each tire made by Tirestone, Michigan and Copper,  and 
the columns represent the quarter numbers. 
 
Solution 
To find the total tire sales of store A  for the whole year, we need to find the sales of each 
brand of tire for the whole year and then add to find the total sales.  To do so, we need to 
rewrite the price matrix so that the quarters are in rows and the brand names are in the 
columns, that is, find the transpose of ][B . 

T][][ BC =  

      

T

95.2203.2702.2203.25
23.3803.4102.3819.40
05.3002.3501.3025.33
















=  



















=

95.2223.3805.30
03.2703.4102.35
02.2202.3801.30
03.2519.4025.33

 

Recognize now that if we find ]][[ CA , we get 
[ ] [ ][ ]CAD =  
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=

95.2223.3805.30
03.2703.4102.35
02.2202.3801.30
03.2519.4025.33

277166
2515105
232025

 

      















=

131121691736
132521521743
119319651597

 

The diagonal elements give the sales of each brand of tire for the whole year,  
that is 
  1597$11 =d  (Tirestone sales) 
  2152$22 =d  (Michigan sales) 
  1311$33 =d  (Cooper sales) 
The total yearly sales of all three brands of tires are  

131121521597
3

1
++=∑

=i
iid  

           5060$=  
and this is the trace of the matrix ][D . 
Define the determinant of a matrix. 
The determinant of a square matrix is a single unique real number corresponding to a matrix.  
For a matrix ][A , determinant is denoted by A  or )det(A .  So do not use ][A  and A  
interchangeably. 
For a 2×2 matrix, 









=

2221

1211][
aa
aa

A  

21122211)det( aaaaA −=  
 
How does one calculate the determinant of any square matrix? 

Let ][A  be nn×  matrix.  The minor of entry ija  is denoted by ijM  and is defined as the 
determinant of the )1(1( −×− nn  submatrix of ][A , where the submatrix is obtained by 
deleting the thi  row and thj  column of the matrix ][A .  The determinant is then given by  

( ) ( )∑
=

+ =−=
n

j
ijij

ji niMaA
1

,,2,1anyfor1det   

or 

( ) ( )∑
=

+ =−=
n

i
ijij

ji njMaA
1

,,2,1anyfor1det   
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Coupled that with ( ) ][matrix11afordet 11 AaA ×= , we can always reduce the determinant 
of a matrix to determinants of 11×  matrices.  The number ij

ji M+− )1(  is called the cofactor of 

ija  and is denoted by ijc .  The formula for the determinant can then be written as 

( ) ∑
=

==
n

j
ijij niCaA

1
,,2,1anyfordet   

or 

( ) ∑
=

==
n

i
ijij njCaA

1
,,2,1anyfordet   

Determinants are not generally calculated using this method as it becomes computationally 
intensive for large matrices.  For a nn×  matrix, it requires arithmetic operations proportional 
to n!. 
 
Example 6 
Find the determinant of  
















=

112144
1864
1525

][A  

Solution 
Method 1: 

( ) ( )∑
=

+ =−=
3

1
3,2,1anyfor1det

j
ijij

ji iMaA  

Let us choose 1=i  in the formula 

( ) ( )∑
=

+−=
3

1
11

11det
j

jj
j MaA  

           ( ) ( ) ( ) 1313
31

1212
21

1111
11 111 MaMaMa +++ −+−+−=  

           131312121111 MaMaMa +−=  
 

112
18

11 =M  

                   4−=  

1144
164

12 =M  

       80−=  

12144
864

13 =M  

       384−=  
131312121111)det( MaMaMaA +−=  
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                        ( ) ( ) ( )3841805425 −+−−−=  
                        384400100 −+−=  
                         84−=  
Also for 1=i , 

( ) ∑
=

=
3

1
11det

j
jjCaA  

( ) 11
11

11 1 MC +−=  
      11M=  
      4−=  

( ) 12
21

12 1 MC +−=  
      12M−=  
      80=  

( ) 13
31

13 1 MC +−=  
      13M=  
      384−=   

( ) 313121211111det CaCaCaA ++=  
                       ( ) ( ) ( )384)1(80)5(4)25( −++−=  
                       384400100 −+−=  
                       84−=  
 
Method 2: 

( ) ( )∑
=

+−=
3

1
1det

i
ijij

ji MaA for any 3,2,1=j  

Let us choose 2=j  in the formula 

( ) ( )∑
=

+−=
3

1
22

21det
i

ii
i MaA  

                       ( ) ( ) ( ) 3232
23

2222
22

1212
21 111 MaMaMa +++ −+−+−=  

                       323222221212 MaMaMa −+−=  

1144
164

12 =M  

       80−=   

1144
125

22 =M  

        119−=  

164
125

32 =M  

        39−=  
323222221212)det( MaMaMaA −+−=  
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            )39(12)119(8)80(5 −−−+−−=  
            468952400 +−=  
            84−=  

In terms of cofactors for 2=j , 

( ) ∑
=

=
3

1
22det

i
ii CaA  

( ) 12
21

12 1 MC +−=  
       12M−=  
       80=  

( ) 22
22

22 1 MC +−=  
       22M=  
       119−=  

( ) 32
23

32 1 MC +−=  
       32M−=  
        39=  

( ) 323222221212det CaCaCaA ++=  
           ( ) ( ) ( )39)12(119)8(80)5( +−+=  
           468952400 +−=  
        84−=  

 
Is there a relationship between det(AB), and det(A) and det(B)? 

Yes, if ][A  and ][B  are square matrices of same size, then 
)det()det()det( BAAB =  

 
Are there some other theorems that are important in finding the determinant of a 
square matrix? 

Theorem 1: If a row or a column in a nn×  matrix ][A  is zero, then 0)det( =A . 
Theorem 2: Let ][A  be a nn×  matrix.  If a row is proportional to another row, then 

0)det( =A . 
Theorem 3: Let ][A  be a nn×  matrix. If a column is proportional to another column, then 

0)det( =A . 
Theorem 4: Let ][A  be a nn× matrix. If a column or row is multiplied by k  to result in 
matrix k , then )det()det( AkB = . 

Theorem 5: Let ][A  be a nn×  upper or lower triangular matrix, then ii

n

i
aA

1
)det(

=
Π= . 

 
Example 7 
What is the determinant of 
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=

1250
5940
4730
3620

][A  

Solution 

Since one of the columns (first column in the above example) of ][A  is a zero, 0)det( =A . 
 
Example 8  
What is the determinant of 



















=

18359
10245
6723
4612

][A  

Solution 

)det(A  is zero because the fourth column 

  



















18
10
6
4

 

is 2 times the first column 

  



















9
5
3
2

 

 
Example 9 
If the determinant of 
















=

112144
1864
1525

][A  

is 84− , then what is the determinant of 
















=

12.25144
18.1664
15.1025

][B  

Solution 

Since the second column of ][B  is 2.1 times the second column of ][A  
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)det( 2.1  )det( AB =  
            )84)(1.2( −=  

             176.4−=  
 
 
Example 10  
Given the determinant of 
















=

112144
1864
1525

][A  

is 84− , what is the determinant of 
















−−=

112144
56.18.40

1525
][B  

Solution 

Since ][B  is simply obtained by subtracting the second row of ][A  by 2.56 times the first 
row of ][A , 

 det(A)  det(B) =   
                       84−=  
 
 
Example 11 
What is the determinant of 
















−−=

7.000
56.18.40

1525
][A  

Solution 

Since ][A  is an upper triangular matrix 

( ) ∏
=

=
3

1

det
i

iiaA  

            332211 aaa ××=  
            7.0)8.4(25 ×−×=  
            84−=  

 
 
Key Terms: 
Transpose 
Symmetric Matrix  
Skew-Symmetric Matrix 
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Trace of Matrix 
Determinant  
  
 



 
 
 
 
 
Chapter 04.05 
System of Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. setup simultaneous linear equations in matrix form and vice-versa, 
2. understand the concept of the inverse of a matrix, 
3. know the difference between a consistent and inconsistent system of linear equations, 

and 
4. learn that a system of linear equations can have a unique solution, no solution or 

infinite solutions. 
 
Matrix algebra is used for solving systems of equations.  Can you illustrate this 
concept? 
Matrix algebra is used to solve a system of simultaneous linear equations.  In fact, for many 
mathematical procedures such as the solution to a set of nonlinear equations, interpolation, 
integration, and differential equations, the solutions reduce to a set of simultaneous linear 
equations.  Let us illustrate with an example for interpolation. 
 
Example 1 
The upward velocity of a rocket is given at three different times on the following table. 
                                 Table 5.1. Velocity vs. time data for a rocket 

Time, t Velocity, v 
(s) (m/s) 
5 106.8 
8 177.2 
12 279.2 

The velocity data is approximated by a polynomial as 
( ) 12.t5   , 2 ≤≤++= cbtattv  

Set up the equations in matrix form to find the coefficients cba ,,  of the velocity profile. 
Solution 

The polynomial is going through three data points ( ) ( ) ( )332211 ,t and ,, ,, vvtvt  where from 
table 5.1. 

8.106,5 11 == vt  
2.177,8 22 == vt  

04.05.1 
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2.279,12 33 == vt  
Requiring that ( ) cbtattv ++= 2  passes through the three data points gives 

( ) cbtatvtv ++== 1
2
111  

( ) cbtatvtv ++== 2
2
222  

( ) cbtatvtv ++== 3
2
333  

Substituting the data ( ) ( ) ( )332211  ,and , , , , vtvtvt  gives 
( ) ( ) 8.106552 =++ cba  
( ) ( ) 2.177882 =++ cba  
( ) ( ) 2.27912122 =++ cba  

or 
8.106525 =++ cba    
2.177864 =++ cba  

2.27912144 =++ cba  
This set of equations can be rewritten in the matrix form as 
















=

















++
++
++

2.279
2.177
8.106

12144
864
525

cba
cba
cba

 

 The above equation can be written as a linear combination as follows 
















=
















+
















+

















2.279
2.177
8.106

1
1
1

12
8
5

144
64
25

cba  

and further using matrix multiplication gives 
















=

































2.279
2.177
8.106

 
112144
1864
1525

c
b
a

 

The above is an illustration of why matrix algebra is needed. The complete solution to the set 
of equations is given later in this chapter. 
 
A general set of m  linear equations and n  unknowns, 

11212111 cxaxaxa nn =+++   

22222121 cxaxaxa nn =+++   
…………………………………… 
……………………………………. 

mnmnmm cxaxaxa =+++ ........2211  
can be rewritten in the matrix form as 
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⋅
⋅=























⋅
⋅























mnmnmm

n

n

c

c
c

x

x
x

aaa

aaa
aaa

2

1

2

1

21

22221

11211

..

..

..



  

Denoting the matrices by [ ]A , [ ]X , and [ ]C , the system of equation is  
[ ][ ] [ ]CXA = , where [ ]A  is called the coefficient matrix, [ ]C  is called the right hand side 
vector and [ ]X  is called the solution vector.  
Sometimes [ ][ ] [ ]CXA =  systems of equations are written in the augmented form.  That is 

[ ]























=

nmnmm

n

n

c

c
c

a......aa

a......aa
a......aa

  CA
2

1

21

22221

11211















 

A system of equations can be consistent or inconsistent.  What does that mean? 

A system of equations [ ][ ] [ ]CXA =  is consistent if there is a solution, and it is inconsistent if 
there is no solution.  However, a consistent system of equations does not mean a unique 
solution, that is, a consistent system of equations may have a unique solution or infinite 
solutions (Figure 1). 
 

 
            Figure 5.1. Consistent and inconsistent system of equations flow chart. 
 
 
Example 2 
Give examples of consistent and inconsistent system of equations. 
Solution 
a) The system of equations 

Consistent System Inconsistent System 

Unique Solution Infinite Solutions 

[A][X]= [B] 



04.05.4                                                        Chapter 04.05 
 









=
















4
6

31
42

y
x

 

is a consistent system of equations as it has a unique solution, that is, 









=








1
1

y
x

. 

b) The system of equations 









=
















3
6

21
42

y
x

 

is also a consistent system of equations but it has infinite solutions as given as follows. 
Expanding the above set of equations,  

32
642

=+
=+

yx
yx

  

you can see that they are the same equation.  Hence, any combination of ( )yx,  that satisfies  
642 =+ yx  

is a solution.  For example ( ) ( )1,1, =yx  is a solution.  Other solutions include 
( ) )25.1,5.0(, =yx , ( ) )5.1  ,0(, =yx , and so on. 
c) The system of equations 









=
















4
6

21
42

y
x

 

is inconsistent as no solution exists. 
 
How can one distinguish between a consistent and inconsistent system of equations? 

A system of equations [ ][ ] [ ]CXA =  is consistent if the rank of A  is equal to the rank of the 
augmented matrix [ ]CA  
A system of equations [ ][ ] [ ]CXA =  is inconsistent if the rank of A  is less than the rank of 
the augmented matrix [ ]CA .   
 
But, what do you mean by rank of a matrix?  
The rank of a matrix is defined as the order of the largest square submatrix whose 
determinant is not zero. 
 
Example 3 
What is the rank of  

[ ]















=

321
502
213

A ? 

Solution 

The largest square submatrix possible is of order 3 and that is ][A  itself. Since 
,023)det( ≠−=A  the rank of .3][ =A  
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Example 4 
What is the rank of  

[ ]















=

715
502
213

A ? 

Solution 

The largest square submatrix of ][A  is of order 3 and that is ][A  itself.  Since 0)det( =A , the 
rank of ][A  is less than 3.  The next largest square submatrix would be a 2×2 matrix.  One of 
the square submatrices of ][A  is 

[ ] 







=

02
13

B  

and 02)det( ≠−=B .  Hence the rank of ][A  is 2.  There is no need to look at other 22×  
submatrices to establish that the rank of ][A  is 2. 
 
Example 5 
How do I now use the concept of rank to find if 
















=

































2.279
2.177
8.106

112144
1864
1525

3

2

1

x
x
x

 

is a consistent or inconsistent system of equations? 
Solution 
The coefficient matrix is 

[ ]















=

112144
1864
1525

A  

and the right hand side vector is 

[ ]















=

2.279
2.177
8.106

C  

The augmented matrix is 

[ ]















=

2.279112144
2.1771864
8.1061525







B  

Since there are no square submatrices of order 4 as ][B  is a 3×4 matrix, the rank of ][B  is at 
most 3.  So let us look at the square submatrices of ][B  of order 3; if any of these square 
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submatrices have determinant not equal to zero, then the rank is 3.  For example, a submatrix 
of the augmented matrix ][B  is 
















=

112144
1864
1525

][D  

has 084)det( ≠−=D . 
Hence the rank of the augmented matrix ][B  is 3.  Since ][][ DA = , the rank of ][A  is 3.  
Since the rank of the augmented matrix ][B  equals the rank of the coefficient matrix ][A , the 
system of equations is consistent. 
 
Example 6 
Use the concept of rank of matrix to find if 
















=

































0.284
2.177
8.106

 
21389
1864
1525

3

2

1

x
x
x

 

is consistent or inconsistent? 
Solution 
The coefficient matrix is given by 

[ ]















=

21389
1864
1525

A  

and the right hand side 

[ ]















=

0.284
2.177
8.106

C  

The augmented matrix is 

[ ]















=

0.284:21389
2.177:1864
8.106:1525

B  

Since there are no square submatrices of order 4 as ][B  is a 4×3 matrix, the rank of the 
augmented ][B  is at most 3.  So let us look at square submatrices of the augmented matrix 

][B  of order 3 and see if any of these have determinants not equal to zero.  For example, a 
square submatrix of the augmented matrix ][B  is 

[ ]















=

21389
1864
1525

D  
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has 0)det( =D .  This means, we need to explore other square submatrices of order 3 of the 
augmented matrix ][B  and find their determinants. 
That is, 

[ ]















=

0.284213
2.17718
8.10615

E  

0)det( =E  

[ ]















=

0.2841389
2.177864
8.106525

F   

0)det( =F  
 

[ ]















=

0.284289
2.177164
8.106125

G  

0)det( =G  
All the square submatrices of order 3×3 of the augmented matrix ][B  have a zero 
determinant.  So the rank of the augmented matrix ][B  is less than 3.  Is the rank of 
augmented matrix ][B  equal to 2?. One of the 22×  submatrices of  the augmented matrix 

][B  is 

[ ] 







=

864
525

H  

and 
0120)det( ≠−=H  

So the rank of the augmented matrix ][B  is 2.   
Now we need to find the rank of the coefficient matrix ][B . 

 [ ]















=

21389
1864
1525

A  

and 
0)det( =A  

So the rank of the coefficient matrix ][A  is less than 3.  A square submatrix of the coefficient 
matrix ][A  is 

[ ] 







=

18
15

J  

03)det( ≠−=J  
So the rank of the coefficient matrix ][A  is 2.   
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Hence, rank of the coefficient matrix ][A equals the rank of the augmented matrix [B].  So 
the system of equations ][][][ CXA =  is consistent. 
 
Example 7 
Use the concept of rank to find if 
















=

































0.280
2.177
8.106

 
21389
1864
1525

3

2

1

x
x
x

 

is consistent or inconsistent. 
Solution 
The augmented matrix is 

[ ]















=

0.280:21389
2.177:1864
8.106:1525

B  

Since there are no square submatrices of order 4×4 as the augmented matrix  ][B  is a 4×3 
matrix, the rank of the augmented matrix ][B  is at most 3.  So let us look at square 
submatrices of the augmented matrix (B) of order 3 and see if any of the 3×3 submatrices 
have a determinant not equal to zero.  For example, a square submatrix of order 3×3 of  ][B  

[ ]















=

21389
1864
1525

D  

det(D) = 0 
So it means, we need to explore other square submatrices of the augmented matrix ][B  

[ ]















=

0.280213
2.17718
8.10615

E  

00.12)det( ≠=E . 
So the rank of the augmented matrix ][B  is 3. 
The rank of the coefficient matrix ][A  is 2 from the previous example. 
Since the rank of the coefficient matrix  ][A  is less than the rank of the augmented matrix 

][B , the system of equations is inconsistent.  Hence, no solution exists for ][][][ CXA = . 
 
If a solution exists, how do we know whether it is unique? 

In a system of equations ][][][ CXA =  that is consistent, the rank of the coefficient matrix 
][A  is the same as the augmented matrix ][ CA .  If in addition, the rank of the coefficient 

matrix ][A  is same as the number of unknowns, then the solution is unique; if the rank of the 
coefficient matrix ][A  is less than the number of unknowns, then infinite solutions exist. 
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Unique solution if
rank (A) = number of unknowns

Infinite solutions if
rank (A) < number of unknowns

Consistent System if
rank (A) = rank (A.B)

Inconsistent System if
rank (A) < rank (A.B)

[A] [X] = [B]

 
 Figure 5.2. Flow chart of conditions for consistent and inconsistent system of equations. 

 
 
Example 8 
We found that the following system of equations 
















=

































2.279
2.177
8.106

 
112144
1864
1525

3

2

1

x
x
x

 

is a consistent system of equations.  Does the system of equations have a unique solution or 
does it have infinite solutions? 
Solution 
The coefficient matrix is 

[ ]















=

112144
1864
1525

A  

and the right hand side is 

[ ]















=

2.279
2.177
8.106

C  

While finding out whether the above equations were consistent in an earlier example, we 
found that the rank of the coefficient matrix (A) equals rank of augmented matrix [ ]CA  
equals 3. 
The solution is unique as the number of unknowns = 3 = rank of (A). 
 
Example 9 
We found that the following system of equations 
















=

































0.284
2.177
8.106

 
21389
1864
1525

3

2

1

x
x
x

 

is a consistent system of equations.  Is the solution unique or does it have infinite solutions. 
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Solution 
While finding out whether the above equations were consistent, we found that the rank of the 
coefficient matrix ][A equals the rank of augmented matrix ( )CA  equals 2 
Since the rank of 2][ =A  < number of unknowns = 3, infinite solutions exist. 
 
If we have more equations than unknowns in [A] [X] = [C], does it mean the system is 
inconsistent? 

No, it depends on the rank of the augmented matrix [ ]CA  and the rank of ][A . 
a)  For example 



















=


































0.284
2.279
2.177
8.106

 

21389
112144
1864
1525

3

2

1

x
x
x

 

is consistent, since 
rank of augmented matrix = 3 
rank of coefficient matrix = 3 

Now since  the rank of (A) = 3 = number of unknowns, the solution is not only consistent but 
also unique. 
b)  For example 



















=


































0.280
2.279
2.177
8.106

 

21389
112144
1864
1525

3

2

1

x
x
x

 

is inconsistent, since 
rank of augmented matrix  = 4 
rank of coefficient matrix = 3 

c)  For example 



















=


































0.280
6.213
2.177
8.106

 

21389
21050
1864
1525

3

2

1

x
x
x

 

is consistent, since 
rank of augmented matrix  = 2 
rank of coefficient matrix = 2 

But since the rank of ][A  = 2 < the number of unknowns = 3, infinite solutions exist. 
 
Consistent systems of equations can only have a unique solution or infinite solutions.  
Can a system of equations have more than one but not infinite number of solutions? 
No, you can only have either a unique solution or infinite solutions.  Let us suppose 

 ][][ ][ CXA = has two solutions ][Y  and ][Z  so that 
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][][ ][ CYA =   
][][ ][ CZA =  

If r  is a constant, then from the two equations  
[ ][ ] [ ]CrYAr =  
( )[ ][ ] ( )[ ]CrZAr −=− 1 1  

Adding the above two equations gives 
 [ ][ ] ( )[ ][ ] [ ] ( )[ ]CrCrZArYAr −+=−+ 1 1  
[ ] [ ] ( )[ ]( ) [ ]CZrYrA =−+ 1  

Hence 
[ ] ( )[ ]ZrYr −+ 1  

is a solution to 
[ ][ ] [ ]CXA =  

Since r  is any scalar, there are infinite solutions for ][][][ CXA =  of the form 
[ ] ( )[ ]ZrYr −+ 1  

 
Can you divide two matrices? 

If ][][][ CBA =  is defined, it might seem intuitive that [ ]
[ ]B
CA =][ , but matrix division is not 

defined like that.  However an inverse of a matrix can be defined for certain types of square 
matrices.  The inverse of a square matrix ][A , if existing, is denoted by 1][ −A  such that 

][][][][][ 11 AAIAA −− ==   
Where ][I  is the identity matrix. 
In other words, let [A] be a square matrix.  If ][B  is another square matrix of the same size 
such that ][][][ IAB = , then ][B  is the inverse of ][A . ][A  is then called to be invertible or 
nonsingular.  If  1][ −A  does not exist, ][A  is called  noninvertible or singular. 
If ][A  and ][B  are two nn×  matrices such that ][][][ IAB = , then these statements are also 
true 

• [B] is the inverse of [A] 
• [A] is the inverse of [B] 
• [A] and [B] are both invertible  
• [A] [B]=[I]. 
• [A] and [B] are both nonsingular 
• all columns of [A] and [B]are linearly independent 
• all rows of [A] and [B] are linearly independent. 

 
Example 10 
Determine if 









=

35
23

][B  

is the inverse of  
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−

−
=

35
23

[A]  

Solution 

]][[ AB 







−

−








=

35
23

35
23

 

             
10
01








=  

            ][I=  
Since  
 ][][][ IAB = ,  

][B  is the inverse of [A] and ][A  is the inverse of ][B .  
But, we can also show that  

]][[ BA 















−

−
=

35
23

35
23

 

            







=

10
01

 

            I][=  
to show that ][A  is the inverse of ][B . 
 
Can I use the concept of the inverse of a matrix to find the solution of a set of equations 
[A] [X] = [C]? 
Yes, if the number of equations is the same as the number of unknowns, the coefficient 
matrix ][A  is a square matrix.   
Given 

][][][ CXA =  
Then, if 1][ −A  exists, multiplying both sides by 1][ −A .  

][][]][[][ 11 CAXAA −− =  
][][][][ 1 CAXI −=  

][][][ 1 CAX −=  
This implies that if we are able to find 1][ −A , the solution vector of ][][][ CXA =  is simply a 
multiplication of 1][ −A  and the right hand side vector, ][C .  
 
How do I find the inverse of a matrix?  

If ][A  is a nn×  matrix, then 1][ −A  is a nn×  matrix and according to the definition of 
inverse of a matrix 

][][][ 1 IAA =−  
Denoting  
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⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅

⋅⋅
⋅⋅

=

nnnn

n

n

aaa

aaa
aaa

A

21

22221

11211

][  























⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅

⋅⋅
⋅⋅

=−

''
2

'
1

'
2

'
22

'
21

'
1

'
12

'
11

1][

nnnn

n

n

aaa

aaa
aaa

A  



























⋅⋅⋅⋅
⋅⋅⋅
⋅⋅
⋅⋅

⋅⋅⋅

=

10

1
0

010
001

][I  

Using the definition of matrix multiplication, the first column of the 1][ −A  matrix can then be 
found by solving 























⋅
⋅=























⋅
⋅























⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅

⋅⋅
⋅⋅

0

0
1

'
1

'
21

'
11

21

22221

11211

nnnnn

n

n

a

a
a

aaa

aaa
aaa

 

Similarly, one can find the other columns of the 1][ −A  matrix by changing the right hand side 
accordingly. 
 
Example 11  
The upward velocity of the rocket is given by 

                        Table 5.2. Velocity vs time data for a rocket 
Time, t (s) Velocity, v  (m/s) 
5 106.8 
8 177.2 
12 279.2 

In an earlier example, we wanted to approximate the velocity profile by 
( ) 125   ,2 ≤≤++= tcbtattv  

We found that the coefficients cba and,,  in ( )tv  are given by 
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=

































2.279
2.177
8.106

c
b
a

 
112144
1864
1525

 

First, find the inverse of 

[ ]















=

112144
1864
1525

A  

and then use the definition of inverse to find the coefficients .and,, cba  
Solution 
If   

[ ]
















=−

'
33

'
32

'
31

'
23

'
22

'
21

'
13

'
12

'
11

1

aaa
aaa
aaa

A  

is the inverse of ][A , then 
















=

































100
010
001

112144
1864
1525

'
33

'
32

'
31

'
23

'
22

'
21

'
13

'
12

'
11

aaa
aaa
aaa

 

gives three sets of equations 
















=

































0
0
1

112144
1864
1525

'
31

'
21

'
11

a
a
a

 
















=

































0
1
0

 
112144
1864
1525

'
32

'
22

'
12

a
a
a

 
















=

































1
0
0

112144
1864
1525

'
33

'
23

'
13

a
a
a

 

Solving the above three sets of equations separately gives 

















'
31

'
21

'
11

a
a
a

=















−

571.4
9524.0

04762.0
 

















'
32

'
22

'
12

a
a
a

=
















−

−

000.5
417.1
08333.0
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−=

















429.1
4643.0

03571.0

'
33

'
23

'
13

a
a
a

 

Hence 

















−
−−

−
=−

429.1000.5571.4
4643.0417.19524.0

03571.008333.004762.0
][ 1A  

Now 
[ ][ ] [ ]CXA =  

where 

[ ]















=

c
b
a

X  

[ ]















=

2.279
2.177
8.106

C  

Using the definition of  [ ] ,1−A  
[ ] [ ][ ] [ ] [ ]                 11 CAXAA −− =  
[ ] [ ] [ ]CA  X 1−=  

































−
−−

−

2.279
2.177
8.106

429.1000.5571.4
4643.0417.19524.0

03571.008333.004762.0
 

Hence 
















=

















086.1
69.19

2905.0

c
b
a

 

So  
( ) 125 ,086.169.192905.0 2 ≤≤++= ttttv  

 
Is there another way to find the inverse of a matrix? 
For finding the inverse of small matrices, the inverse of an invertible matrix can be found by 

[ ] ( ) ( )Aadj
A

A
det

11 =−  

where 
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( )

T

21

22221

11211



















=

nnnn

n

n

CCC

CCC
CCC

Aadj







 

where ijC  are the cofactors of ija .  The matrix  



















nnn

n

n

CC

CCC
CCC









1

22221

11211

 

itself is called the matrix of cofactors from [A].  Cofactors are defined in Chapter 4. 
 
Example 12  
Find the inverse of 

[ ]















=

112144
1864
1525

A  

Solution 
From Example 4.6 in Chapter 04.06, we found 

( ) 84det −=A  
Next we need to find the adjoint of ][A .  The cofactors of A  are found as follows. 
The minor of entry 11a  is 

112144
1864
1525

11 =M  

                   
112
18

=  

                   4−=   
The cofactors of entry 11a  is 

( ) 11
11

11 1 MC +−=  
                   11M=  
                   4−=  
The minor of entry 12a  is 

112144
1864
1525

12 =M  
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1144
164

=  

       80−=  
The cofactor of entry 12a  is 
 ( ) 12

21
12 1 MC +−=  

       12M−=  
                  )80(−−=  
       80=   
Similarly 
 38413 −=C  
 721 =C  
 11922 −=C  
 42023 =C  
 331 −=C  
 3932 =C  
 12033 −=C  
Hence the matrix of cofactors of ][A  is 

[ ]
















−−
−

−−
=

120393
4201197
384804

C  

The adjoint of matrix ][A  is T][C , 
( ) [ ]TCAadj =  

                       
















−−
−

−−
=

120420384
3911980

374
 

Hence 

[ ] ( ) ( )Aadj
A

A
det

11 =−  

                     
















−−
−

−−

−
=

120420384
3911980

374

84
1  

         
















−
−−

−
=

429.1000.5571.4
4643.0417.19524.0

03571.008333.004762.0
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If the inverse of a square matrix [A] exists, is it unique? 
Yes, the inverse of a square matrix is unique, if it exists.  The proof is as follows.  Assume 
that the inverse of ][A  is ][B  and if this inverse is not unique, then let another inverse of ][A  
exist called ][C . 
If ][B  is the inverse of ][A , then 

][][][ IAB =  
Multiply both sides by ][C , 

][][][][][ CICAB =  
][][][][ CCAB =  

Since [C] is inverse of ][A , 
][][][ ICA =  

Multiply both sides by ][B , 
][][][ CIB =  

][][ CB =  
This shows that ][B  and ][C  are the same. So the inverse of ][A  is unique. 
 
 
Key Terms: 
Consistent system 
Inconsistent system 
Infinite solutions 
Unique solution 
Rank 
Inverse  
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Chapter 04.06 
Gaussian Elimination 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. solve a set of simultaneous linear equations using Naïve Gauss elimination, 
2. learn the pitfalls of the Naïve Gauss elimination method, 
3. understand the effect of round-off error when solving a set of linear equations with 

the Naïve Gauss elimination method, 
4. learn how to modify the Naïve Gauss elimination method to the Gaussian elimination 

with partial pivoting method to avoid pitfalls of the former method,  
5. find the determinant of a square matrix using Gaussian elimination, and 
6. understand the relationship between the determinant of a coefficient matrix and the 

solution of simultaneous linear equations. 
 
How is a set of equations solved numerically? 
One of the most popular techniques for solving simultaneous linear equations is the Gaussian 
elimination method.  The approach is designed to solve a general set of n  equations and n  
unknowns 

11313212111 ... bxaxaxaxa nn =++++  

22323222121 ... bxaxaxaxa nn =++++   
     .                 . 
     .                 . 
     .                 . 

nnnnnnn bxaxaxaxa =++++ ...332211  
Gaussian elimination consists of two steps 

1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each 
equation starting with the first equation.  This way, the equations are reduced to one 
equation and one unknown in each equation. 

2. Back Substitution:  In this step, starting from the last equation, each of the unknowns 
is found. 

 
Forward Elimination of Unknowns:   

In the first step of forward elimination, the first unknown, 1x  is eliminated from all rows 
below the first row.  The first equation is selected as the pivot equation to eliminate 1x .  So, 
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to eliminate 1x  in the second equation, one divides the first equation by 11a  (hence called the 
pivot element) and then multiplies it by 21a .  This is the same as multiplying the first 
equation by 1121 / aa  to give  

1
11

21
1

11

21
212

11

21
121 ... b

a
axa

a
axa

a
axa nn =+++  

Now, this equation can be subtracted from the second equation to give  

1
11

21
21

11

21
2212

11

21
22 ... b

a
abxa

a
aaxa

a
aa nnn −=








−++








−   

or 
22222 ... bxaxa nn ′=′++′  

where  

nnn a
a
aaa

a
a
aaa

1
11

21
22

12
11

21
2222

     

 

−=′

−=′

  

This procedure of eliminating 1x , is now repeated for the third equation to the thn  equation 
to reduce the set of equations as 

11313212111 ... bxaxaxaxa nn =++++  

22323222 ... bxaxaxa nn ′=′++′+′  

33333232 ... bxaxaxa nn ′=′++′+′  
 .                 .  . 
 .                 .  . 
 .                 .  . 

nnnnnn bxaxaxa ′=′++′+′ ...3322  
This is the end of the first step of forward elimination. Now for the second step of forward 
elimination, we start with the second equation as the pivot equation and 22a′  as the pivot 
element.  So, to eliminate 2x  in the third equation, one divides the second equation by 22a′  
(the pivot element) and then multiply it by 32a′ .  This is the same as multiplying the second 
equation by 2232 / aa ′′  and subtracting it from the third equation.  This makes the coefficient of 

2x  zero in the third equation.  The same procedure is now repeated for the fourth equation till 
the thn equation to give 

11313212111 ... bxaxaxaxa nn =++++  

22323222 ... bxaxaxa nn ′=′++′+′  

33333 ... bxaxa nn ′′=′′++′′  
  .               . 
  .               . 
  .               . 

nnnnn bxaxa ′′=′′++′′ ...33  
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The next steps of forward elimination are conducted by using the third equation as a pivot 
equation and so on.  That is, there will be a total of 1−n  steps of forward elimination.  At the 
end of 1−n  steps of forward elimination, we get a set of equations that look like 

++ 212111 xaxa 11313 ... bxaxa nn =++  
            22323222 ... bxaxaxa nn ′=′++′+′  
                        33333 ... bxaxa nn ′′=′′++′′  
                                  .             . 
                                  .             . 
                                  .             . 
                                        ( ) ( )11 −− = n

nn
n

nn bxa     
 

Back Substitution:   
Now the equations are solved starting from the last equation as it has only one unknown.   

)1(

)1(

−

−

= n
nn

n
n

n a
b

x  

Then the second last equation, that is the th)1( −n  equation, has two unknowns: nx  and 1−nx , 
but nx  is already known.  This reduces the th)1( −n  equation also to one unknown.  Back 
substitution hence can be represented for all equations by the formula 

( ) ( )

( )1
1

11

−
+=

−− ∑−
= i

ii

n

ij
j

i
ij

i
i

i a

xab
x      for 1,,2,1 −−= nni   

and  

)1(

)1(

−

−

= n
nn

n
n

n a
b

x  

 
Example 1 
The upward velocity of a rocket is given at three different times in Table 1. 
 

                            Table 1  Velocity vs. time data. 

Time, t  (s) Velocity, v  (m/s) 

5 106.8 
8 177.2 
12 279.2 

 
The velocity data is approximated by a polynomial as 

( ) 125           , 32
2

1 ≤≤++= tatatatv  
The coefficients 321 and a, , aa  for the above expression are given by 
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=

































2.279
2.177
8.106

 
112144
1864
1525

3

2

1

a
a
a

 

Find the values of 321 and  a,, aa  using the Naïve Gauss elimination method.  Find the velocity 
at 11 ,9 ,5.7 ,6=t  seconds. 
 
Solution 
Forward Elimination of Unknowns  
Since there are three equations, there will be two steps of forward elimination of unknowns. 
First step 
Divide Row 1 by 25 and then multiply it by 64, that is, multiply Row 1 by 2.5664/25 = . 

[ ] [ ]( ) 56.28.106  1525 ×  gives Row 1 as 
[ ] [ ]408.27356.28.1264  

Subtract the result from Row 2  

 

[ ] [ ]
[ ] [ ]

208.9656.18.40     
408.27356.28.1264   
2.1771     864     

−−−
−  

to get the resulting equations as 
















−=
































−−

2.279
208.96
8.106

 
112144
56.18.40

1525

3

2

1

a
a
a

  

Divide Row 1 by 25 and then multiply it by 144, that is, multiply Row 1 by 5.76144/25 = . 
[ ] [ ]( ) 76.58.106 1525 ×  gives Row 1 as 
[ ] [ ]168.61576.58.28144  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

968.33576.48.16  0       
168.61576.58.28144  
2.2791    12144    

−−−
−  

to get the resulting equations as 

















−
−=

































−−
−−

968.335
208.96
8.106

 
76.48.160
56.18.40

1525

3

2

1

a
a
a

 

Second step 
We now divide Row 2 by –4.8 and then multiply by –16.8, that is, multiply Row 2 by 

3.54.816.8/ =−− . 
[ ] [ ]( ) 5.3208.96 56.18.40 ×−−−   gives Row 2 as 
[ ] [ ]728.33646.58.160 −−−  

Subtract the result from Row 3 
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[ ] [ ]
[ ] [ ]

76.0         7.0     0     0 
728.33646.58.160   
968.3354.768.160     

−−−−
−−−

 

to get the resulting equations as 
















−=
































−−

76.0
208.96
8.106

 
7.000
56.18.40

1525

3

2

1

a
a
a

 

 
Back substitution 
From the third equation 

76.07.0 3 =a  

70
760     3 .
.a =  

       1.08571       =  
Substituting the value of 3a  in the second equation, 

208.9656.18.4 32 −=−− aa  

8.4
56.1208.96 3

2 −
+−

=
a

a  

  
4.8

08571.11.5696.208    
−

×+−
=  

  690519.    =  
Substituting the value of 2a  and 3a  in the first equation, 

8.106525 321 =++ aaa  

25
58.106

 32
1

aa
a

−−
=  

  
25

08571.16905.1958.106     −×−
=  

  290472.0     =  
Hence the solution vector is 
















=

















08571.1
6905.19

290472.0

3

2

1

a
a
a

 

The polynomial that passes through the three data points is then 
( ) 32

2
1 atatatv ++=  

125 ,08571.16905.19290472.0      2 ≤≤++= ttt  
Since we want to find the velocity at 11 and 9 ,5.7 ,6=t  seconds, we could simply substitute 
each value of t  in ( ) 08571.16905.19290472.0 2 ++= tttv  and find the corresponding 
velocity.  For example, at 6=t  
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( ) ( ) ( )
m/s686.129       

08571.166905.196290472.06 2

=
++=v  

However we could also find all the needed values of velocity at t  = 6, 7.5, 9, 11 seconds 
using matrix multiplication. 

( ) [ ]
















=
1

  0857116905192904720

2

t
t

.     .    .tv  

So if we want to find ( ) ( ) ( ) ( ),11 ,9 ,5.7 ,6 vvvv  it is given by  

( ) ( ) ( ) ( )[ ] [ ]
















=
1111
1195.76

1195.76
  08571.1   6905.19   0.290472 11 9  5.7 6 

 
2222

vvvv  

[ ]















=

1111
1197.56

1218156.2536
  1.08571     19.6905     290472.0  

[ ]252.828     201.828      165.104     686.129=  
m/s 686.129)6( =v  

m/s 041.165)5.7( =v  
m/s 828.201)9( =v  
m/s 828.252)11( =v  

 
Example 2 
Use Naïve Gauss elimination to solve 

45101520 321 =++ xxx  
751.17249.23 321 =+−− xxx  

935 321 =++ xxx     
Use six significant digits with chopping in your calculations. 
Solution 
Working in the matrix form  
















−−

315
7249.23

101520

















3

2

1

x
x
x

 = 
















9
751.1
45

 

Forward Elimination of Unknowns 

First step 
Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3 −=− . 

[ ] [ ]( ) 15.045101520 −×  gives Row 1 as 
[ ] [ ]75.65.125.23 −−−−  
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Subtract the result from Row 2  

 

[ ] [ ]
[ ] [ ]

  501.8    5.8  001.0   0        
75.65.125.23   

751.17 249.23     
−−−−−

−−

 

to get the resulting equations as 

















315
5.8001.00

101520

















3

2

1

x
x
x

=
















9
501.8
45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5 =  
[ ] [ ]( ) 25.045101520 ×  gives Row 1 as 
[ ] [ ]25.115.275.35  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

2.25  .5075.20     
25.115.2 75.3   5   

93       1   5     

−−
−  

to get the resulting equations as 

















− 5.075.20
5.8001.00

101520

















3

2

1

x
x
x

=
















− 25.2
501.8
45

 

Second step 
Now for the second step of forward elimination, we will use Row 2 as the pivot equation and 
eliminate Row 3: Column 2.  
Divide Row 2 by 0.001 and then multiply it by –2.75, that is, multiply Row 2 by 

2750001.0/75.2 −=− . 
[ ] [ ]( ) 2750501.85.8001.00 −×  gives Row 2 as 
[ ] [ ]75.233772337575.20 −−−  

Rewriting within 6 significant digits with chopping 
[ ] [ ]7.233772337575.20 −−−  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

3375.452 5.23375        0      0    
7.2337723375 2.75   0   

25.2.50       75.2   0     
−−−−
−−

 

Rewriting within 6 significant digits with chopping 
 [ ] [ ]4.233755.2337500 −  
to get the resulting equations as 

















5.2337500
5.8001.00

101520
 

















3

2

1

x
x
x

= 
















4.23375
501.8
45

  

This is the end of the forward elimination steps. 
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Back substitution 
We can now solve the above equations by back substitution.  From the third equation, 

4.233755.23375 3 =x  

             
5.23375
4.23375

3 =x  

                  999995.0=  
Substituting the value of 3x  in the second equation 

501.85.8001.0 32 =+ xx  

0.001
0.999995585018     

001.0
5.8501.8 3

2

×−
=

−
=

..

xx
 

     
001.0

49995.8501.8 −
=  

     
001.0

00105.0
=  

     05.1=  
Substituting the value of 3x  and 2x  in the first equation, 

45101520 321 =++ xxx  

20
10 1545 32

1
xx

x
−−

=  

 
20

999995.01005.11545    ×−×−
=  

     

20
2500.19

20
99995.925.29

20
99995.975.1545

=

−
=

−−
=

 

    9625.0 =   
Hence the solution is 
















=

3

2

1

][
x
x
x

X  

      















=

999995.0
05.1

9625.0
 

 
Compare this with the exact solution of 
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[ ]















=

3

2

1

x
x
x

X  

      















=

1
1
1

 

 
Are there any pitfalls of the Naïve Gauss elimination method? 
Yes, there are two pitfalls of the Naïve Gauss elimination method. 
Division by zero: It is possible for division by zero to occur during the beginning of the 

1−n  steps of forward elimination. 
For example 

1165 32 =+ xx  
16754 321 =++ xxx  
15329 321 =++ xxx  

will result in division by zero in the first step of forward elimination as the coefficient of 1x  
in the first equation is zero as is evident when we write the equations in matrix form. 

 















=

































15
16
11

329
754
650

3

2

1

x
x
x

 

But what about the equations below: Is division by zero a problem? 
18765 321 =++ xxx  

2531210 321 =++ xxx  
56191720 321 =++ xxx  

Written in matrix form, 

 















=

































56
25
18

191720
31210
765

3

2

1

x
x
x

 

there is no issue of division by zero in the first step of forward elimination. The pivot element 
is the coefficient of 1x  in the first equation, 5, and that is a non-zero number. However, at the 
end of the first step of forward elimination, we get the following equations in matrix form 

 
















−
−=

































−−
−

16
11

18

970
1100
765

3

2

1

x
x
x

 

Now at the beginning of the 2nd step of forward elimination, the coefficient of 2x  in Equation 
2 would be used as the pivot element. That element is zero and hence would create the 
division by zero problem. 
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So it is important to consider that the possibility of division by zero can occur at the 
beginning of any step of forward elimination. 
 
Round-off error:  The Naïve Gauss elimination method is prone to round-off errors.  This is 
true when there are large numbers of equations as errors propagate.  Also, if there is 
subtraction of numbers from each other, it may create large errors.  See the example below. 
 
Example 3 
Remember Example 2 where we used Naïve Gauss elimination to solve 

45101520 321 =++ xxx  
751.17249.23 321 =+−− xxx  

935 321 =++ xxx  
using six significant digits with chopping in your calculations?  Repeat the problem, but now 
use five significant digits with chopping in your calculations. 
Solution 
Writing in the matrix form 
















−−

315
7249.23

101520
 

















3

2

1

x
x
x

=
















9
751.1
45

 

Forward Elimination of Unknowns 

First step 
Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3 −=− . 

[ ] [ ]( ) 15.045101520 −×  gives Row 1 as 
[ ] [ ]75.65.125.23 −−−−  

Subtract the result from Row 2  

 

[ ] [ ]
[ ] [ ]

  501.8    5.8  001.0   0        
75.65.125.23   

751.17 249.23     
−−−−−

−−

 

to get the resulting equations as 

















315
5.8001.00

101520

















3

2

1

x
x
x

=
















9
501.8
45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5 = . 
[ ] [ ]( ) 25.045101520 ×  gives Row 1 as 
[ ] [ ]25.115.275.35  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

2.25  .5075.20     
25.115.2 75.3   5   

93       1   5     

−−
−  
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to get the resulting equations as 

















− 5.075.20
5.8001.00

101520

















3

2

1

x
x
x

=
















− 25.2
501.8
45

 

Second step 
Now for the second step of forward elimination, we will use Row 2 as the pivot equation and 
eliminate Row 3: Column 2.  
Divide Row 2 by 0.001 and then multiply it by –2.75, that is, multiply Row 2 by 

2750001.0/75.2 −=− . 
[ ] [ ]( ) 2750501.85.8001.00 −×  gives Row 2 as 
[ ] [ ]75.233772337575.20 −−−  

Rewriting within 5 significant digits with chopping 
[ ] [ ]233772337575.20 −−−  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

 33742   23375        0      0    
2337723375 2.75   0   

25.2.50       75.2   0     
−−−−
−−

 

Rewriting within 6 significant digits with chopping 
 [ ] [ ]233742337500 −  
to get the resulting equations as 

















2337500
5.8001.00

101520
 

















3

2

1

x
x
x

= 
















23374
501.8
45

  

This is the end of the forward elimination steps. 
Back substitution 
We can now solve the above equations by back substitution.  From the third equation, 

2337423375 3 =x  

23375
23374

3 =x  

99995.0    =  
Substituting the value of 3x  in the second equation 

501.85.8001.0 32 =+ xx  

0.001
0.99995585018     

001.0
5.8501.8 3

2

×−
=

−
=

..

xx
 

     

001.0
4995.8501.8

001.0
499575.8501.8

−
=

−
=
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001.0

0015.0
=  

     5.1=  
Substituting the value of 3x  and 2x  in the first equation, 

45101520 321 =++ xxx  

20
10 1545 32

1
xx

x
−−

=  

 
20

99995.0105.11545    ×−×−
=  

     

20
500.12
20
5005.12

20
9995.95.22
20

9995.95.2245

=

=

−
=

−−
=

 

    625.0 =   
Hence the solution is 

[ ]















=

3

2

1

x
x
x

X  

      















=

99995.0
5.1

625.0
 

Compare this with the exact solution of 

[ ]















=

3

2

1

x
x
x

X















=

1
1
1

 

 
What are some techniques for improving the Naïve Gauss elimination method? 
As seen in Example 3, round off errors were large when five significant digits were used as 
opposed to six significant digits.  One method of decreasing the round-off error would be to 
use more significant digits, that is, use double or quad precision for representing the 
numbers.  However, this would not avoid possible division by zero errors in the Naïve Gauss 
elimination method.  To avoid division by zero as well as reduce (not eliminate) round-off 
error, Gaussian elimination with partial pivoting is the method of choice. 
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How does Gaussian elimination with partial pivoting differ from Naïve Gauss 
elimination? 
The two methods are the same, except in the beginning of each step of forward elimination, a 
row switching is done based on the following criterion.  If there are n  equations, then there 
are 1−n  forward elimination steps.  At the beginning of the thk  step of forward elimination, 
one finds the maximum of  

kka , kka ,1+ , …………, nka  

Then if the maximum of these values is pka  in the thp  row, npk ≤≤ , then switch rows p  
and k .  
The other steps of forward elimination are the same as the Naïve Gauss elimination method.  
The back substitution steps stay exactly the same as the Naïve Gauss elimination method. 
 
Example 4 
In the previous two examples, we used Naïve Gauss elimination to solve 

45101520 321 =++ xxx    
751.17249.23 321 =+−− xxx  

935 321 =++ xxx  
using five and six significant digits with chopping in the calculations.  Using five significant 
digits with chopping, the solution found was 

[ ]















=

3

2

1

x
x
x

X  

      















=

99995.0
5.1

625.0
 

This is different from the exact solution of 

[ ]















=

3

2

1

x
x
x

X  
















=

1
1
1

        

Find the solution using Gaussian elimination with partial pivoting using five significant digits 
with chopping in your calculations. 
Solution 
















−−

315
7249.23

101520
 

















3

2

1

x
x
x

  =   
















9
751.1
45
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Forward Elimination of Unknowns 
Now for the first step of forward elimination, the absolute value of the first column elements 
below Row 1 is 

20 , 3− , 5  
        or 

20, 3, 5 
So the largest absolute value is in the Row 1.  So as per Gaussian elimination with partial 
pivoting, the switch is between Row 1 and Row 1 to give 
















−−

315
7249.23

101520
 

















3

2

1

x
x
x

  =  
















9
751.1
45

 

Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3 −=− . 
[ ] [ ]( ) 15.045101520 −×  gives Row 1 as 
[ ] [ ]75.65.125.23 −−−−  

Subtract the result from Row 2  

 

[ ] [ ]
[ ] [ ]

  501.8    5.8  001.0   0        
75.65.125.23   

751.17 249.23     
−−−−−

−−

 

to get the resulting equations as 

















315
5.8001.00

101520

















3

2

1

x
x
x

 = 
















9
501.8
45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5 = . 
[ ] [ ]( ) 25.045101520 ×  gives Row 1 as 
[ ] [ ]25.115.275.35  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

2.25  .5075.20     
25.115.2 75.3   5   

93       1   5     

−−
−  

to get the resulting equations as 

















− 5.075.20
5.8001.00

101520

















3

2

1

x
x
x

  =  

















− 25.2
501.8
45

 

This is the end of the first step of forward elimination. 
Now for the second step of forward elimination, the absolute value of the second column 
elements below Row 1 is 

001.0 , 75.2−  
          or 

0.001, 2.75 
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So the largest absolute value is in Row 3.  So Row 2 is switched with Row 3 to give 
















−

5.8001.00
5.075.20

101520
  

















3

2

1

x
x
x

  =  















−

501.8
25.2

7
 

Divide Row 2 by –2.75 and then multiply it by 0.001, that is, multiply Row 2 by 
00036363.075.2/001.0 −=− . 

[ ] [ ]( ) 00036363.025.25.075.20 −×−−  gives Row 2 as 
[ ] [ ]00081816.000018182.000099998.00 −  

Subtract the result from Row 3  

 

[ ] [ ]
[ ] [ ]

.500181848  50018182.8                      0   0     
00081816.00.00018182 .000999980   0   
501.8.58              .0010   0     

−−  

Rewriting within 5 significant digits with chopping 
[ ] [ ]5001.85001.800  

to get the resulting equations as 
















−

5001.800
5.075.20

101520
  

















3

2

1

x
x
x

  =  















−

5001.8
25.2

45
 

Back substitution 

5001.85001.8 3 =x  

           
5001.8
5001.8

3 =x  

                 =1 
Substituting the value of 3x  in Row 2 

25.25.075.2 32 −=+− xx  

75.2
5.025.2 2

2 −
−−

=
xx  

  
75.2

15.025.2   
−

×−−
=  

  
75.2

5.025.2   
−

−−
=  

75.2
75.2     

−
−

=  

1     =  
Substituting the value of 3x  and 2x  in Row 1 

45101520 321 =++ xxx  

20
101545 32

1
xx

x
−−

=  
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20

11011545 ×−×−
=  

    

20
1030 

20
101545 

−
=

−−
=

 

     
20
20

=  

     1=  
So the solution is  

[ ]















=

3

2

1

x
x
x

X  

      = 
















1
1
1

 

This, in fact, is the exact solution.  By coincidence only, in this case, the round-off error is 
fully removed. 
 
Can we use Naïve Gauss elimination methods to find the determinant of a square 
matrix? 
One of the more efficient ways to find the determinant of a square matrix is by taking 
advantage of the following two theorems on a determinant of matrices coupled with Naïve 
Gauss elimination. 
 
Theorem 1:  

Let ][A  be a nn×  matrix.  Then, if ][B  is a nn×  matrix that results from adding or 
subtracting a multiple of one row to another row, then )det()det( BA = (The same is true for 
column operations also). 
 
Theorem 2:  

Let ][A  be a nn×  matrix that is upper triangular, lower triangular or diagonal, then 

nnii aaaaA ×××××= ......)det( 2211   

                  ∏
=

=
n

i
iia

1

 

This implies that if we apply the forward elimination steps of the Naïve Gauss elimination 
method, the determinant of the matrix stays the same according to Theorem 1.  Then since at 
the end of the forward elimination steps, the resulting matrix is upper triangular, the 
determinant will be given by Theorem 2. 
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Example 5 
Find the determinant of  
















=

112144
1864
1525

][A  

Solution 
Remember in Example 1, we conducted the steps of forward elimination of unknowns using 
the Naïve Gauss elimination method on ][A  to give 

[ ]















−−=

7.000
56.18.40

1525
B  

According to Theorem 2 
)det()det( BA =  

           7.0)8.4(25 ×−×=  
           00.84−=  
 

What if I cannot find the determinant of the matrix using the Naïve Gauss elimination 
method, for example, if I get division by zero problems during the Naïve Gauss 
elimination method? 
Well, you can apply Gaussian elimination with partial pivoting.  However, the determinant of 
the resulting upper triangular matrix may differ by a sign.  The following theorem applies in 
addition to the previous two to find the determinant of a square matrix. 
 
Theorem 3:  

Let ][A  be a nn×  matrix.  Then, if ][B  is a matrix that results from switching one row with 
another row, then )det()det( AB −= . 
 
Example 6 
Find the determinant of  

















−
−

−
=

515
6099.23
0710

][A  

Solution 
The end of the forward elimination steps of Gaussian elimination with partial pivoting, we 
would obtain 















 −
=

002.600
55.20
0710

][B  

( ) 002.65.210det ××=B  
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            05.150=  
Since rows were switched once during the forward elimination steps of Gaussian elimination 
with partial pivoting, 

( ) )det(det BA −=  
            05.150−=  
 
Example 7 
Prove  

( )1det
1)det( −=
A

A  

Solution 

( ) ( )
( ) ( )
( ) ( )1

1

1

1

det
1det

1detdet
det det

][]][[

−

−

−

−

=

=

=

=

A
A

AA
IAA

IAA

 

If ][A  is a nn×  matrix and 0)det( ≠A , what other statements are equivalent to it? 
1. ][A  is invertible. 
2. 1][ −A  exists. 
3. ][][][ CXA =  has a unique solution. 
4. ]0[][][ =XA  solution is ]0[][



=X . 
5. ][][][][][ 11 AAIAA −− == . 

 
 
Key Terms: 
Naïve Gauss Elimination  
Partial Pivoting  
Determinant 
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Chapter 04.07 
LU Decomposition 
 
 
 
After reading this chapter, you should be able to: 

1. identify when LU decomposition is numerically more efficient than Gaussian 
elimination, 

2. decompose a nonsingular matrix into LU, and 
3. show how LU decomposition is used to find the inverse of a matrix. 

 
I hear about LU decomposition used as a method to solve a set of simultaneous linear 
equations.  What is it? 
We already studied two numerical methods of finding the solution to simultaneous linear 
equations – Naïve Gauss elimination and Gaussian elimination with partial pivoting.  Then, 
why do we need to learn another method?  To appreciate why LU decomposition could be a 
better choice than the Gauss elimination techniques in some cases, let us discuss first what 
LU decomposition is about. 
For a nonsingular matrix [ ]A  on which one can successfully conduct the Naïve Gauss 
elimination forward elimination steps, one can always write it as 

[ ] [ ][ ]ULA  =  
where 

[ ]L = Lower triangular matrix 
[ ]U  = Upper triangular matrix 

Then if one is solving a set of equations 
][]][[ CXA = ,  

then 
[ ][ ][ ] [ ]CXUL =   as [ ][ ]( )ULA  ][ =  

Multiplying both sides by [ ] 1−L , 
[ ] [ ][ ][ ] [ ] [ ]CLXULL    11 −− =    
[ ][ ][ ]XUI = [ ] [ ]CL 1−  as [ ] [ ]( )][1 ILL =−  
[ ][ ] [ ] [ ]CLXU 1−=  as [ ][ ]( )][UUI =  

Let 
[ ] [ ] [ ]ZCL =−1  
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then 
[ ][ ] [ ]CZL =        (1) 

and 
[ ][ ] [ ]ZXU =        (2) 

So we can solve Equation (1) first for ][Z  by using forward substitution and then use 
Equation (2) to calculate the solution vector [ ]X  by back substitution. 
This is all exciting but LU decomposition looks more complicated than Gaussian 
elimination.  Do we use LU decomposition because it is computationally more efficient 
than Gaussian elimination to solve a set of n equations given by [A][X]=[C]? 

For a square matrix ][A  of nn ×  size, the computational time1 DECT |  to decompose the ][A  
matrix to ]][[ UL  form is given by 

DECT |  = 







−+

3
204

3
8 2

3 nnnT ,  

where  
 T = clock cycle time2.  
The computational time FSCT |  to solve by forward substitution [ ][ ] [ ]CZL =  is given by 

FSCT |  = ( )nnT 44 2 −  
The computational time BSCT |  to solve by back substitution [ ][ ] [ ]ZXU =  is given by 

BSCT |  = ( )nnT 124 2 +  
So, the total computational time to solve a set of equations by LU decomposition is 

LUCT | = DECT | + FSCT | + BSCT |  

           = 







−+

3
204

3
8 2

3 nnnT + ( )nnT 44 2 − + ( )nnT 124 2 +  

           = 







++

3
412

3
8 2

3 nnnT  

 
 
Now let us look at the computational time taken by Gaussian elimination.  The computational 
time FECT |  for the forward elimination part, 

FECT | = 







−+

3
328

3
8 2

3 nnnT ,  

                                                 
 
 
1 The time is calculated by first separately calculating the number of additions, subtractions, 
multiplications, and divisions in a procedure such as back substitution, etc.  We then assume 
4 clock cycles each for an add, subtract, or multiply operation, and 16 clock cycles for a 
divide operation as is the case for a typical AMD®-K7 chip. 
http://www.isi.edu/~draper/papers/mwscas07_kwon.pdf 
2 As an example, a 1.2 GHz CPU has a clock cycle of ns833333.0)102.1/(1 9 =×  

http://www.isi.edu/~draper/papers/mwscas07_kwon.pdf
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and the computational time BSCT |  for the back substitution part is 

BSCT |  = ( )nnT 124 2 +  
So, the total computational time GECT |  to solve a set of equations by Gaussian Elimination 
is 

GECT | = FECT | + BSCT |  

= 







−+

3
328

3
8 2

3 nnnT + ( )nnT 124 2 +  

= 







++

3
412

3
8 2

3 nnnT  

The computational time for Gaussian elimination and LU decomposition is identical. 
 
This has confused me further!  Why learn LU decomposition method when it takes the 
same computational time as Gaussian elimination, and that too when the two methods 
are closely related.  Please convince me that LU decomposition has its place in solving 
linear equations!  

We have the knowledge now to convince you that LU decomposition method has its 
place in the solution of simultaneous linear equations.  Let us look at an example where the 
LU decomposition method is computationally more efficient than Gaussian elimination.  
Remember in trying to find the inverse of the matrix ][A  in Chapter 04.05, the problem 
reduces to solving n  sets of equations with the n  columns of the identity matrix as the RHS 
vector.  For calculations of each column of the inverse of the ][A  matrix, the coefficient 
matrix ][A  matrix in the set of equation [ ][ ] [ ]CXA =  does not change.  So if we use the LU 
decomposition method, the [ ] [ ][ ]ULA =  decomposition needs to be done only once, the 
forward substitution (Equation 1) n  times, and the back substitution (Equation 2) n  times. 

Therefore, the total computational time LUinverseCT |  required to find the inverse of a 
matrix using LU decomposition is  

LUinverseCT | = DECT |1× + FSCTn |× + BSCTn |×  

      = 







−+×

3
204

3
81 2

3 nnnT + ×n ( )nnT 44 2 − + ×n ( )nnT 124 2 +  

                              = 







−+

3
2012

3
32 2

3 nnnT  

In comparison, if Gaussian elimination method were used to find the inverse of a matrix, the 
forward elimination as well as the back substitution will have to be done n times.  The total 
computational time GEinverseCT |  required to find the inverse of a matrix by using Gaussian 
elimination then is  

GEinverseCT | = FECTn |× + BSCTn |×  

      = ×n 







−+

3
328

3
8 2

3 nnnT + ×n ( )nnT 124 2 +  
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                 = 







++

3
412

3
8 2

3
4 nnnT  

Clearly for large n , GEinverseCT | >> LUinverseCT |  as GEinverseCT |  has the dominating terms of 4n  

and LUinverseCT | has the dominating terms of 3n .  For large values of n , Gaussian elimination 
method would take more computational time (approximately 4/n  times – prove it) than the 
LU decomposition method.  Typical values of the ratio of the computational time for 
different values of n  are given in Table 1. 
 
Table 1 Comparing computational times of finding inverse of a matrix using LU 
decomposition and Gaussian elimination. 

n  10 100 1000 10000 
GEinverseCT | / LUinverseCT |  3.28 25.83 250.8 2501 

 
Are you convinced now that LU decomposition has its place in solving systems of equations?  
We are now ready to answer other curious questions such as  
1)  How do I find LU matrices for a nonsingular matrix ][A ?  
2) How do I conduct forward and back substitution steps of Equations (1) and (2), 
respectively? 
 
How do I decompose a non-singular matrix ][A , that is, how do I find [ ] [ ][ ]U LA = ? 

If forward elimination steps of the Naïve Gauss elimination methods can be applied on a 
nonsingular matrix, then [ ]A  can be decomposed into LU as 



















=

nnnn

n

n

aaa

aaa
aaa

A









21

22221

11211

][  

      





































=

nn

n

n

nn u

uu
uuu

















00

0

1

01
001

222

11211

21

21  

The elements of the [ ]U  matrix are exactly the same as the coefficient matrix one obtains at 
the end of the forward elimination steps in Naïve Gauss elimination. 
The lower triangular matrix [ ]L  has 1 in its diagonal entries.  The non-zero elements on the 
non-diagonal elements in [ ]L  are multipliers that made the corresponding entries zero in the 
upper triangular matrix [ ]U  during forward elimination. 
Let us look at this using the same example as used in Naïve Gaussian elimination. 
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Example 1 
Find the LU decomposition of the matrix 

[ ]















=

112144
1864
1525

A  

Solution 

[ ] [ ][ ]ULA =   

     































=

33

2322

131211

3231

21

00
0

1
01
001

u
uu
uuu



  

The [ ]U  matrix is the same as found at the end of the forward elimination of Naïve Gauss 
elimination method, that is 

[ ]















−−=

7.000
56.18.40

1525
U  

To find 21  and 31 , find the multiplier that was used to make the 21a  and 31a  elements zero 
in the first step of forward elimination of the Naïve Gauss elimination method.  It was 

25
64

21 =  

      56.2=  

25
144

31 =  

      76.5=  
To find 32 , what multiplier was used to make 32a  element zero?  Remember 32a  element 
was made zero in the second step of forward elimination.  The [ ]A  matrix at the beginning of 
the second step of forward elimination was 

















−−
−−

76.48.160
56.18.40

1525
 

So 

8.4
8.16

32 −
−

=  

       5.3=  
Hence 

[ ]















=

15.376.5
0156.2
001

L  

Confirm [ ][ ] [ ]AUL = . 
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[ ][ ]















−−
















=

7.000
56.18.40

1525

15.376.5
0156.2
001

UL  

          















=

112144
1864
1525

 

 
Example 2 
Use the LU decomposition method to solve the following simultaneous linear equations. 
















=

































2279
2177
8106

112144
1864
1525

3

2

1

.

.

.

a
a
a

  

Solution 
Recall that 

[ ][ ] [ ]CXA =      
and if 

[ ] [ ][ ]ULA  =  
then first solving 

[ ][ ] [ ]CZL =  
and then 

[ ][ ] [ ]ZXU =  
gives the solution vector [ ]X . 
Now in the previous example, we showed 

[ ] [ ][ ]ULA =  

     















−−
















=

7.000
56.18.40

1525

15.376.5
0156.2
001

 

First solve 
[ ][ ] [ ]CZL =  
















=

































2.279
2.177
8.106

15.376.5
0156.2
001

3

2

1

z
z
z

 

to give 
8.1061 =z   

2.17756.2 21 =+ zz  
2.2795.376.5 321 =++ zzz  

Forward substitution starting from the first equation gives 
106.8 1 =z  
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12 56.22.177 z z −=  
            8.10656.22.177 ×−=  
             208.96−=  

213 5.376.52.279 zzz −−=  
          ( )208.965.38.10676.52.279 −×−×−=  

     76.0=  
Hence 

[ ]















=

3

2

1

z
z
z

Z    

           















−=

76.0
208.96
8.106

 

This matrix is same as the right hand side obtained at the end of the forward elimination steps 
of Naïve Gauss elimination method.  Is this a coincidence? 
Now solve 

[ ][ ] [ ]ZXU =  
















−=
































−−

760
20896
8106

  
7.000
56.18.40

1525

3

2

1

.
.
.

a
a
a

 

8.106525 321 =++ aaa  
208.9656.18.4 32 −=−− aa  

76.07.0 3 =a  
From the third equation 

76.07.0 3 =a  

70
760

3 .
.a =  

     1.0857=  
Substituting the value of 3a  in the second equation, 

208.9656.18.4 32 −=−− aa  

8.4
56.1208.96 3

2 −
+−

=
a

a  

  
4.8

0857.11.5696.208    
−

×+−
=  

  69119.    =  
Substituting the value of 2a  and 3a  in the first equation, 

8.106525 321 =++ aaa  

25
58.106

 32
1

aa
a

−−
=  
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25

0857.1691.1958.106     −×−
=  

  29048.0     =  
Hence the solution vector is 
















=

















0857.1
691.19

29048.0

3

2

1

a
a
a

 

How do I find the inverse of a square matrix using LU decomposition? 

A matrix [ ]B  is the inverse of [ ]A  if 
[ ][ ] [ ] [ ][ ]ABIBA   == .   

How can we use LU decomposition to find the inverse of the matrix?  Assume the first 
column of [ ]B  (the inverse of [ ]A ) is  

T
11211 ]......[ nbbb  

Then from the above definition of an inverse and the definition of matrix multiplication 

[ ]


















=



















0

0
1

1

21

11



nb

b
b

A  

Similarly the second column of [ ]B  is given by 

[ ]


















=



















0

1
0

2

22

12



nb

b
b

A  

Similarly, all columns of [ ]B  can be found by solving n  different sets of equations with the 
column of the right hand side being the n  columns of the identity matrix. 
  
Example 3 
Use LU decomposition to find the inverse of  

[ ]















=

112144
1864
1525

A  

Solution 
Knowing that 

[ ] [ ][ ]ULA =  

     















−−
















=

0.700
1.564.80
1525

 
15.376.5
0156.2
001
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We can solve for the first column of [ ] 1][ −= AB by solving for 
















=

































0
0
1

 
112144
1864
1525

31

21

11

b
b
b

 

First solve 
[ ][ ] [ ]CZL = ,  

that is 
















=

































0
0
1

15.376.5
0156.2
001

3

2

1

z
z
z

 

to give 
11 =z   

056.2 21 =+ zz  
05.376.5 321 =++ zzz  

Forward substitution starting from the first equation gives 
1 1 =z  

12 5620 z. z −=  
     ( )156.20 −=  
     56.2−=  

213 5.376.50 zzz −−=  
     ( ) ( )56.25.3176.50 −−−=  
     2.3=  

 Hence 

[ ]















=

3

2

1

z
z
z

Z  

     















−=

2.3
56.2

1
 

Now solve 
[ ][ ] [ ]ZXU =  

that is 
















−=
































−−

3.2
2.56
1

  
7.000
56.18.40

1525

31

21

11

b
b
b

 

1525 312111 =++ bbb  
56.256.18.4 3121 −=−− bb  
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2.37.0 31 =b  
Backward substitution starting from the third equation gives 

7.0
2.3

31 =b  

      571.4=  

8.4
56.156.2 31

21 −
+−

=
b

b  

      
8.4

)571.4(56.156.2
−
+−

=  

      9524.0−=  

25
51 3121

11
bb

b
−−

=  

      
25

571.4)9524.0(51 −−−
=  

      04762.0=  
Hence the first column of the inverse of [ ]A  is 
















−=

















571.4
9524.0

04762.0

31

21

11

b
b
b

 

Similarly by solving  
















=

































0
1
0

112144
1864
1525

32

22

12

b
b
b

 gives 
















−

−
=

















000.5
417.1
08333.0

32

22

12

b
b
b

 

and solving 
















=

































1
0
0

 
112144
1864
1525

33

23

13

b
b
b

 gives 















−=

















429.1
4643.0

03571.0

33

23

13

b
b
b

 

Hence 

[ ]
















−
−−

−
=−

429.1000.5571.4
4643.0417.19524.0

03571.008333.004762.0
1A  

Can you confirm the following for the above example?   
[ ][ ] [ ] [ ] [ ]AAIAA 11 −− ==  

 
 
Key Terms: 
LU decomposition 
Inverse   



 
 
 
 
 
Chapter 04.08 
Gauss-Seidel Method 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. solve a set of equations using the Gauss-Seidel method, 
2. recognize the advantages and pitfalls of the Gauss-Seidel method, and 
3. determine under what conditions the Gauss-Seidel method always converges. 

 
Why do we need another method to solve a set of simultaneous linear equations? 
In certain cases, such as when a system of equations is large, iterative methods of solving 
equations are more advantageous.  Elimination methods, such as Gaussian elimination, are 
prone to large round-off errors for a large set of equations.  Iterative methods, such as the 
Gauss-Seidel method, give the user control of the round-off error.  Also, if the physics of the 
problem are well known, initial guesses needed in iterative methods can be made more 
judiciously leading to faster convergence. 
What is the algorithm for the Gauss-Seidel method?  Given a general set of n  equations and 
n  unknowns, we have 

11313212111 ... cxaxaxaxa nn =++++  

22323222121 ... cxaxaxaxa nn =++++  
.                 . 
.                 . 
.                 . 

nnnnnnn cxaxaxaxa =++++ ...332211  
If the diagonal elements are non-zero, each equation is rewritten for the corresponding 
unknown, that is, the first equation is rewritten with 1x  on the left hand side, the second 
equation is rewritten with 2x  on the left hand side and so on as follows 

 

04.08.1 
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nn

nnnnnn
n

nn

nnnnnnnnn
n

nn

nn

a
xaxaxac

x

a
xaxaxaxac

x

a
xaxaxac

x

a
xaxaxac

x

11,2211

1,1

,122,122,111,11
1

22

23231212
2

11

13132121
1

−−

−−

−−−−−−−
−

−−−−
=

−−−−
=

−−−
=

−−−
=













 

These equations can be rewritten in a summation form as 

11

1
1

11

1 a

xac

x

n

j
j

jj∑
≠
=

−

=  

22

2
1

22

2 a

xac

x

j

n

j
j

j∑
≠
=

−

=  

. 
 . 

. 

1,1

1
1

,11

1
−−

−≠
=

−−

−

∑−

=
nn

n

nj
j

jjnn

n a

xac

x  

nn

n

nj
j

jnjn

n a

xac

x

∑
≠
=

−

=
1

 

Hence for any row i , 

.,,2,1,
1

ni
a

xac

x
ii

n

ij
j

jiji

i =

−

=

∑
≠
=

 

Now to find ix ’s, one assumes an initial guess for the ix ’s and then uses the rewritten 
equations to calculate the new estimates.  Remember, one always uses the most recent 
estimates to calculate the next estimates, ix .  At the end of each iteration, one calculates the 
absolute relative approximate error for each ix  as 
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100
new

oldnew

×
−

=∈
i

ii
ia x

xx
 

where new
ix is the recently obtained value of ix , and old

ix  is the previous value of ix . 
When the absolute relative approximate error for each xi is less than the pre-specified 
tolerance, the iterations are stopped. 
 
Example 1 
The upward velocity of a rocket is given at three different times in the following table 

 
                            Table 1  Velocity vs. time data. 

Time, t  (s) Velocity, v  (m/s) 

5 106.8 
8 177.2 
12 279.2 

 
The velocity data is approximated by a polynomial as 

( ) 125           , 32
2

1 ≤≤++= tatatatv  
Find the values of 321  and ,, aaa  using the Gauss-Seidel method.  Assume an initial guess of 
the solution as  
















=

















5
2
1

3

2

1

a
a
a

 

and conduct two iterations. 
Solution 

The polynomial is going through three data points ( ) ( ) ( )332211 , and ,, ,, vtvtvt  where from the 
above table 

8.106    ,5 11 == vt  
2.177    ,8 22 == vt  
2.279  ,12 33 == vt  

Requiring that ( )  32
2

1 atatatv ++= passes through the three data points gives 
( ) 312

2
1111 atatavtv ++==  

( ) 322
2
2122 atatavtv ++==  

( ) 332
2
3133 atatavtv ++==  

Substituting the data ( ) ( ) ( )332211 , and ,, ,, vtvtvt  gives 
( ) ( ) 8.10655 32

2
1 =++ aaa  
( ) ( ) 2.17788 32

2
1 =++ aaa  
( ) ( ) 2.2791212 32

2
1 =++ aaa  
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or 
8.106525 321 =++ aaa    
2.177864 321 =++ aaa  

2.27912144 321 =++ aaa  
The coefficients 321  and , , aaa  for the above expression are given by 
















=

































2.279
2.177
8.106

 
112144
1864
1525

3

2

1

a
a
a

 

Rewriting the equations gives 

25
58.106 32

1
aa

a
−−

=  

8
642.177 31

2
aa

a
−−

=  

1
121442.279 21

3
aaa −−

=  

Iteration #1 
Given the initial guess of the solution vector as 
















=

















5
2
1

3

2

1

a
a
a

 

we get 

25
)5()2(58.106

1

−−
=a  

     6720.3=  
( ) ( )
8

56720.3642.177
2

−−
=a  

     8150.7−=  
( ) ( )

1
8510.7126720.31442.279

3
−−−

=a  

     36.155−=  
The absolute relative approximate error for each ix  then is 

100
6720.3

16720.3
1

×
−

=∈a  

        %76.72=  

100
8510.7

28510.7
2

×
−

−−
=∈a  

        %47.125=  

100
36.155

536.155
3

×
−

−−
=∈a  

        %22.103=  
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At the end of the first iteration, the estimate of the solution vector is 

  
















−
−=

















36.155
8510.7

6720.3

3

2

1

a
a
a

 

and the maximum absolute relative approximate error is 125.47%. 
 
Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 

















−
−=

















36.155
8510.7

6720.3

3

2

1

a
a
a

 

Now we get 
( )

25
)36.155(8510.758.106

1
−−−−

=a  

     056.12=  
( )

8
)36.155(056.12642.177

2
−−−

=a  

     882.54−=  
( ) ( )

1
882.5412056.121442.279

3

−−−
=a  

     = 34.798−  
The absolute relative approximate error for each ix  then is 

100
056.12

6720.3056.12
1

×
−

=∈a  

        %543.69=  
( ) 100
882.54

8510.7882.54
2

×
−

−−−
=∈a  

        %695.85=  
( ) 100

34.798
36.15534.798

3
×

−
−−−

=∈a  

        %540.80=  
At the end of the second iteration the estimate of the solution vector is 

















−
−=

















54.798
882.54

056.12

3

2

1

a
a
a

 

and the maximum absolute relative approximate error is 85.695%. 
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
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Iteration 1a  %
1a∈  2a  %

2a∈  3a  %
3a∈  

1 
2 
3 
4 
5 
6 

3.6720 
12.056 
47.182 
193.33 
800.53 
3322.6 

72.767 
69.543 
74.447 
75.595 
75.850 
75.906 

–7.8510 
–54.882 
–255.51 
–1093.4 
–4577.2 
–19049 

125.47 
85.695 
78.521 
76.632 
76.112 
75.972 

–155.36 
–798.34 
–3448.9 
–14440 
–60072 
–249580 

103.22 
80.540 
76.852 
76.116 
75.963 
75.931 

 
 As seen in the above table, the solution estimates are not converging to the true solution of 

29048.01 =a  
690.192 =a  

0857.13 =a  
The above system of equations does not seem to converge.  Why? 
Well, a pitfall of most iterative methods is that they may or may not converge.  However, the 
solution to a certain classes of systems of simultaneous equations does always converge 
using the Gauss-Seidel method.  This class of system of equations is where the coefficient 
matrix ][A  in ][]][[ CXA =  is diagonally dominant, that is 

∑
≠
=

≥
n

ij
j

ijii aa
1

 for all i  

∑
≠
=

>
n

ij
j

ijii aa
1

 for at least one i  

If a system of equations has a coefficient matrix that is not diagonally dominant, it may or 
may not converge.  Fortunately, many physical systems that result in simultaneous linear 
equations have a diagonally dominant coefficient matrix, which then assures convergence for 
iterative methods such as the Gauss-Seidel method of solving simultaneous linear equations. 
 
Example 2 
Find the solution to the following system of equations using the Gauss-Seidel method. 

15312 321   xx  x =−+      
2835 321  x  x  x  =++  

761373 321 =++  x  x  x  
Use 
















=

















1
0
1

3

2

1

x
x
x

 

as the initial guess and conduct two iterations. 
Solution 
The coefficient matrix 
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[ ]














 −
=

1373
351
5312

A  

is diagonally dominant as 
8531212 131211 =−+=+≥== aaa  

43155 232122 =+=+≥== aaa  

10731313 323133 =+=+≥== aaa  
and the inequality is strictly greater than for at least one row.  Hence, the solution should 
converge using the Gauss-Seidel method. 
Rewriting the equations, we get 

12
531 32

1

xxx +−
=  

5
328 31

2
xx

x
−−

=  

13
7376 21

3
xxx −−

=  

Assuming an initial guess of 
















=

















1
0
1

3

2

1

x
x
x

 

Iteration #1 
( ) ( )
12

15031
1

+−
=x  

     50000.0=  
( ) ( )

5
1350000.028

2
−−

=x  

     9000.4=  
( ) ( )

13
9000.4750000.0376

3
−−

=x  

     0923.3=  
The absolute relative approximate error at the end of the first iteration is 

100
50000.0

150000.0
1

×
−

=∈a  

        %00.100=  

100
9000.4

09000.4
2

×
−

=∈a  

        %00.100=  

100
0923.3

10923.3
3

×
−

=∈a  

        %662.67=  
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The maximum absolute relative approximate error is 100.00% 
Iteration #2 

( ) ( )
12

0923.359000.431
1

+−
=x  

     14679.0=  
( ) ( )

5
0923.3314679.028

2

−−
=x  

     7153.3=  
( ) ( )

13
7153.3714679.0376

3
−−

=x  

     8118.3=  
At the end of second iteration, the absolute relative approximate error is 

100
14679.0

50000.014679.0
1

×
−

=∈a  

        %61.240=  

100
7153.3

9000.47153.3
2

×
−

=∈a  

        %889.31=  

100
8118.3

0923.38118.3
3

×
−

=∈a  

        %874.18=  
The maximum absolute relative approximate error is 240.61%.  This is greater than the value 
of 100.00% we obtained in the first iteration.  Is the solution diverging?  No, as you conduct 
more iterations, the solution converges as follows. 
 

Iteration 1x  %
1a∈  2x  %

2a∈  3x  %
3a∈  

1 
2 
3 
4 
5 
6 

0.50000 
0.14679 
0.74275 
0.94675 
0.99177 
0.99919 

100.00 
240.61 
80.236 
21.546 
4.5391 
0.74307 

4.9000 
3.7153 
3.1644 
3.0281 
3.0034 
3.0001 

100.00 
31.889 
17.408 
4.4996 
0.82499 
0.10856 

3.0923 
3.8118 
3.9708 
3.9971 
4.0001 
4.0001 

67.662 
18.874 
4.0064 
0.65772 
0.074383 
0.00101 

 
This is close to the exact solution vector of  
















=

















4
3
1

3

2

1

x
x
x

 

 
Example 3 
Given the system of equations 

761373 321   x  x  x =++  
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2835 321   x  x x =++  
15312 321   x - x x  =+   

find the solution using the Gauss-Seidel method.  Use  
















=

















1
0
1

3

2

1

x
x
x

 

as the initial guess. 
Solution 
Rewriting the equations, we get 

3
13776 32

1

xxx −−
=  

5
328 31

2

xxx −−
=  

5
3121 21

3 −
−−

=
xxx  

Assuming an initial guess of 
















=

















1
0
1

3

2

1

x
x
x

 

the next six iterative values are given in the table below. 
 

Iteration 1x  %
1a∈  2x  %

2a∈  3x  %
3a∈  

1 
2 
3 
4 
5 
6 

21.000 
–196.15 
1995.0 
–20149 
2.0364×105 
–2.0579×106 

95.238 
110.71 
109.83 
109.90 
109.89 
109.89 

0.80000 
14.421 
–116.02 
1204.6 
–12140 
1.2272×105 

100.00 
94.453 
112.43 
109.63 
109.92 
109.89 

50.680 
–462.30 
4718.1 
–47636 
4.8144×105 
–4.8653×106 

98.027 
110.96 
109.80 
109.90 
109.89 
109.89 

 
You can see that this solution is not converging and the coefficient matrix is not diagonally 
dominant.  The coefficient matrix 

[ ]
















−
=

5312
351

1373
A  

is not diagonally dominant as 
2013733 131211 =+=+≤== aaa  

Hence, the Gauss-Seidel method may or may not converge. 
However, it is the same set of equations as the previous example and that converged.  The 
only difference is that we exchanged first and the third equation with each other and that 
made the coefficient matrix not diagonally dominant. 
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Therefore, it is possible that a system of equations can be made diagonally dominant if one 
exchanges the equations with each other.  However, it is not possible for all cases.  For 
example, the following set of equations 

3321 =++ xxx  
9432 321 =++ xxx  

97 321 =++ xxx  
cannot be rewritten to make the coefficient matrix diagonally dominant. 
 
 
Key Terms: 
Gauss-Seidel method 
Convergence of Gauss-Seidel method 
Diagonally dominant matrix 
  
 



 
 
 
 
 
Chapter 04.09 
 Adequacy of Solutions 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. know the difference between ill-conditioned and well-conditioned systems of 
equations, 

2. define and find the norm of a matrix 
3. define and evaluate the condition number of an invertible square matrix 
4. relate the condition number of a coefficient matrix to the ill or well conditioning 

of the system of simultaneous linear equations, that is, how much can you trust the 
solution of the simultaneous linear equations. 

 
What do you mean by ill-conditioned and well-conditioned system of equations? 
A system of equations is considered to be well-conditioned if a small change in the 
coefficient matrix or a small change in the right hand side results in a small change in the 
solution vector. 
A system of equations is considered to be ill-conditioned if a small change in the 
coefficient matrix or a small change in the right hand side results in a large change in the 
solution vector. 
 
Example 1 
Is this system of equations well-conditioned? 









=
















999.7
4

999.32
21

y
x

 

Solution 
The solution to the above set of equations is  

04.09.1 
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=








1
2

y
x

  

Make a small change in the right hand side vector of the equations 









=
















998.7
001.4

999.32
21

y
x

 

gives 








−
=








000.4
999.3

y
x

 

Make a small change in the coefficient matrix of the equations 









=
















999.7
4

998.3001.2
001.2001.1

y
x

 

gives 









=








001388.0

994.3
y
x

 

This last systems of equation “looks” ill-conditioned because a small change in the 
coefficient matrix or the right hand side resulted in a large change in the solution vector. 
 
Example 2 
Is this system of equations well-conditioned? 









=
















7
4

32
21

y
x

 

Solution 
The solution to the above equations is 









=








1
2

y
x

 

Make a small change in the right hand side vector of the equations.  









=
















001.7
001.4

32
21

y
x

 

gives 









=








001.1
999.1

y
x

 

Make a small change in the coefficient matrix of the equations. 
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=
















7
4

001.3001.2
001.2001.1

y
x

 

gives 









=








997.0
003.2

y
x

 

This system of equation “looks” well conditioned because small changes in the 
coefficient matrix or the right hand side resulted in small changes in the solution vector. 
 
So what if the system of equations is ill conditioned or well conditioned? 
Well, if a system of equations is ill-conditioned, we cannot trust the solution as much.  
Revisit the velocity problem, Example 5.1 in Chapter 5.  The values in the coefficient 
matrix ][A  are squares of time, etc. For example, if instead of  ,2511 =a you used 

 ,99.2411 =a would you want this small change to make a huge difference in the solution 
vector.  If it did, would you trust the solution? 
 
Later we will see how much (quantifiable terms) we can trust the solution in a system of 
equations.  Every invertible square matrix has a condition number and coupled with the 
machine epsilon, we can quantify how many significant digits one can trust in the 
solution. 
 
To calculate the condition number of an invertible square matrix, I need to know 
what the norm of a matrix means.  How is the norm of a matrix defined? 
Just like the determinant, the norm of a matrix is a simple unique scalar number.  
However, the norm is always positive and is defined for all matrices – square or 
rectangular, and invertible or noninvertible square matrices. 
One of the popular definitions of a norm is the row sum norm (also called  the uniform-
matrix norm).  For a nm×  matrix ][A , the row sum norm of ][A  is defined as 

∑
=

∞ <<
=

n

j
ija

mi
A

11
max  

that is, find the sum of the absolute value of the elements of each row of the matrix ][A .  
The maximum out of the m  such values is the row sum norm of the matrix ][A . 
 
Example 3 
Find the row sum norm of the following matrix [A]. 
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−
−

−
=

515
6099.23
0710

A  

Solution 

∑
=

∞ <<
=

3

131
max

j
ija

i
A  

        ( ) ( ) ( )[ ]515,6099.23,0710max +−+++−+−+=  
        ( ) ( ) ( )[ ]515,6099.23,0710max ++++++=  
       [ ]11,099.11,17max=  
       .17=  

 
How is the norm related to the conditioning of the matrix? 
Let us start answering this question using an example.  Go back to the ill-conditioned 
system of equations, 









=
















999.7
4

999.32
21

y
x

 

that gives the solution as 









=








1
2

y
x

 

Denoting the above set of equations as 
[ ][ ] [ ]CX A =  

2=
∞

X  

999.7=
∞

C  
Making a small change in the right hand side, 









=
















998.7
001.4

999.32
21

y
x

 

gives 








−
=








000.4
999.3

y
x

 

Denoting the above set of equations by  
[ ][ ] [ ]'' CX A =  

right hand side vector is found by 
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[ ] [ ] [ ]CCC −=∆ '  
and the change in the solution vector is found by 

[ ] [ ] [ ]XXX −=∆ '  
then 

[ ] 







−








=∆

999.7
4

998.7
001.4

C  

        







−

=
001.0

001.0
 

and 

[ ] 







−







−
=∆

1
2

000.4
999.3

X  

        






−
=

000.3
999.5

 

then 
001.0=∆

∞
C  

999.5=∆
∞

X  
The relative change in the norm of the solution vector is  

9995.2

2
999.5

=

=
∆

∞

∞

           

X
X

 

The relative change in the norm of the right hand side vector is 

410250.1

999.7
001.0

−

∞

∞

×=

=
∆

            

C
C

 

See the small relative change of 410250.1 −×  in the right hand side vector norm results in 
a large relative change in the solution vector norm of 2.9995.  
In fact, the ratio between the relative change in the norm of the solution vector and the 
relative change in the norm of the right hand side vector is 

410250.1
9995.2

/
/

−
∞∞

∞∞

×
=

∆

∆

CC
XX

 

                      23993=  
Let us now go back to the well-conditioned system of equations. 
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=
















7
4

32
21

y
x

 

gives 









=








1
2

y
x

 

Denoting the system of equations by 
[ ][ ] [ ]CXA =  

2=
∞

X  

7=
∞

C  
Making a small change in the right hand side vector 









=
















001.7
001.4

32
21

y
x

 

gives 









=








001.1
999.1

y
x

 

Denoting the above set of equations by 
[ ][ ] [ ]'' CXA =  

the change in the right hand side vector is then found by 
[ ] [ ] [ ]CCC −=∆ '  

and the change in the solution vector is 
[ ] [ ] [ ]XXX −=∆ '  

then  

[ ] 







−








=∆

7
4

001.7
001.4

C  

        







=

001.0
001.0

 

and 

[ ] 







−








=∆

1
2

001.1
999.1

X  

        






−
=

001.0
001.0

 

then 
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001.0=∆
∞

C  

001.0=∆
∞

X  
The relative change in the norm of solution vector is 

2
001.0

=
∆

∞

∞

X
X

 

            4105 −×=  
The relative change in the norm of the right hand side vector is 

7
001.0

=
∆

∞

∞

C
C

 

           410429.1 −×=   
See the small relative change in the right hand side vector norm of 410429.1 −×  results in 
the small relative change in the solution vector norm of 4105 −× . 
 
In fact, the ratio between the relative change in the norm of the solution vector and the 
relative change in the norm of the right hand side vector is 

4104291

4105
/
/

−×

−×
=

∆

∆

∞∞

∞∞

.CC
XX

 

                    5.3=  
 
What are some of the properties of norms? 

1. For a matrix ][A , 0≥A  

2. For a matrix ][A  and a scalar k, AkkA =  

3. For two matrices ][A  and ][B  of same order, BABA +≤+  

4. For two matrices ][A  and ][B  that can be multiplied as ][][ BA , BAAB  ≤  
 
Is there a general relationship that exists between XX /∆  and CC /∆  or 

between XX /∆  and AA /∆ ? If so, it could help us identify well-conditioned and 
ill conditioned system of equations. 
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If there is such a relationship, will it help us quantify the conditioning of the matrix?   
That is, will it tell us how many significant digits we could trust in the solution of a 
system of simultaneous linear equations? 
 
There is a relationship that exists between 

C
C

X
X ∆∆

and  

and between 

A
A

X
X ∆∆

and  

These relationships are  

C
C

AA
X
X ∆

≤
∆ −1  

and 

A
A

AA
XX

X ∆
<

∆+
∆ −1  

The above two inequalities show that the relative change in the norm of the right hand 
side vector or the coefficient matrix can be amplified by as much as 1−AA . 

This number 1−AA  is called the condition number of the matrix and coupled with the 
machine epsilon, we can quantify the accuracy of the solution of ][][][ CXA = . 
 
Prove for  

][][][ CXA =    
that 

A
A

AA
XX

X ∆
≤

∆+

∆ −1 . 

Proof 
Let  

[ ][ ] [ ]CXA =        (1) 
Then if ][A  is changed to [ ]'A ,  the ][X  will change to [ ]'X , such 
that 

[ ][ ] [ ]CXA =''        (2) 
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From Equations (1) and (2), 

[ ][ ] [ ][ ]'' X AXA =  
Denoting change in ][A  and ][X  matrices as [ ]A∆  and [ ]X∆ , respectively 

[ ] [ ] [ ]AAA −=∆ '  
[ ] [ ] [ ]XXX −=∆ '  

then 
[ ][ ] [ ] [ ]( ) [ ] [ ]( )XXAAX A ∆+∆+=  

Expanding the above expression 
[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]X AX AX AX AX A ∆∆+∆+∆+=  

[ ][ ] [ ] [ ] [ ]( )XXAXA ∆+∆+∆=   ]0[  
[ ][ ] [ ] [ ] [ ]( )XXAXA ∆+∆=∆−  

[ ] [ ] [ ] [ ] [ ]( )XXAAX ∆+∆−=∆ −1  
Applying the theorem of norms, that the norm of multiplied matrices is less than the 
multiplication of the individual norms of the matrices, 

XXAAX ∆+∆<∆ −1  

Multiplying both sides by A  

XXAAAXA ∆+∆<∆ −1  

A
A

AA
XX

X ∆
<

∆+
∆ −1  

 
How do I use the above theorems to find how many significant digits are correct in 
my solution vector?  
The relative error in a solution vector norm is ≤  Cond (A) × relative error in right hand 
side vector norm. 
The possible relative error in the solution vector norm is ≤  mach∈×(A) Cond  
Hence mach∈×(A) Cond  should give us the number of significant digits, m that are at least 
correct in our solution by finding out the largest value of m for which mach∈×(A) Cond  is 
less than m−×105.0 . 
 
Example 4  
How many significant digits can I trust in the solution of the following system of 
equations? 
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=
















4
2

999.32
21

y
x

 

Solution 
For  

[ ] 







=

999.32
21

A  

it can be shown 

[ ] 







−

−
=−

10002000
200039991A  

999.5=
∞

A  

59991 =
∞

−A  

( )
∞

−
∞

= 1AAACond  

               4.5999999.5 ×=  
               35990=  

Assuming single precision with 23 bits used in the mantissa for real numbers, the 
machine epsilon is 

6

23

10119209.0        

2
−

−

×=

=∈mach  

610119209.035990)( −××=∈× machACond  
                          2104290.0 −×=  

For what maximum positive value of m, would machACond ∈×)(  be less than or equal to 
m−×105.0  

2
067.2

067.2
)10log()108580.0log(

10108580.0
105.0104290.0

2

2

2

≤
≤

−≤−
≤×

≤×

×≤×

−−

−−

−−

m
m

m

m

m

m

 

So two significant digits are at least correct in the solution vector.   
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Example 5  
How many significant digits can I trust in the solution of the following system of 
equations? 









=
















7
4

32
21

y
x

 

Solution 
For 

[ ] 







=

32
21

A  

it can be shown 

[ ] 







−

−
=−

12
231A  

Then 
5=

∞
A , 

51 =
∞

−A . 

∞

−
∞

= 1(A)Cond AA  

                55×=  
                25=  

Assuming single precision with 23 bits used in the mantissa for real numbers, the 
machine epsilon 

232−=∈mach  
        610119209.0 −×=  

610119209.025)( −××=∈× machACond  
                          5102980.0 −×=  

For what maximum positive value of m, would machACond ∈×)(  be less than or equal to 
m−×105.0  

5
105.0102980.0 5

≤
×≤× −−

m

m

 

So five significant digits are at least correct in the solution vector. 
 
Key Terms: 
Ill-Conditioned matrix 
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Well-Conditioned matrix 
Norm 
Condition Number 
Machine Epsilon 
Significant Digits  
 



 
 
 
 
 
Chapter 04.10 
Eigenvalues and Eigenvectors 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. define eigenvalues and eigenvectors of a square matrix, 
2. find eigenvalues and eigenvectors of a square matrix, 
3. relate eigenvalues to the singularity of a square matrix, and 
4. use the power method to numerically find the largest eigenvalue in magnitude of a 

square matrix and the corresponding eigenvector. 
 
What does eigenvalue mean? 
The word eigenvalue comes from the German word Eigenwert where Eigen means 
characteristic and Wert means value.  However, what the word means is not on your mind!  
You want to know why I need to learn about eigenvalues and eigenvectors.  Once I give you 
an example of an application of eigenvalues and eigenvectors, you will want to know how to 
find these eigenvalues and eigenvectors.   
 
Can you give me a physical example application of eigenvalues and eigenvectors? 
Look at the spring-mass system as shown in the picture below. 
 
 
 
 
 
 
 
 
Assume each of the two mass-displacements to be denoted by 1x  and 2x , and let us assume 
each spring has the same spring constant k .  Then by applying Newton’s 2nd and 3rd law of 
motion to develop a force-balance for each mass we have 

)( 1212
1

2

1 xxkkx
dt

xdm −+−=   

)( 122
2

2

2 xxk
dt

xdm −−=  

1x
 

2x
 

 
m1 

 
m2 

k k 

04.10.1 
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Rewriting the equations, we have 

0)2( 212
1

2

1 =+−− xxk
dt

xdm  

0)( 212
2

2

2 =−− xxk
dt

xdm  

Let 15 ,20,10 21 === kmm  
 

 

0)(1520 212
2

2

=−− xx
dt

xd  

From vibration theory, the solutions can be of the form 
( )0sin /−= tAx ii ω  

where 
iA = amplitude of the vibration of mass i , 

ω  = frequency of vibration, 
0/  = phase shift. 

then 

)0(2
2

2

/−−= tSinwA
dt

xd
i

i ω  

Substituting ix and 2

2

dt
xd i in equations, 

0)2(1510 21
2

1 =+−−− AAAω  
0)(1520 21

2
2 =−−− AAA ω  

gives 
015)3010( 21

2 =−+− AAω  
0)1520(15 2

2
1 =+−+− AA ω  

or 
05.1)3( 21

2 =−+− AAω  
0)75.0(75.0 2

2
1 =+−+− AA ω  

In matrix form, these equations can be rewritten as 









=

















+−−
−+−

0
0

75.075.0
5.13

2

1
2

2

A
A

ω
ω

 









=








−
















−

−
0
0

75.075.0
5.13

2

12

2

1

A
A

A
A

ω  

Let λω =2  









−

−
=

75.075.0
5.13

][A  

0)2(1510 212
1

2

=+−− xx
dt

xd
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=

2

1][
A
A

X  

0][][][ =− XXA λ  
][][][ XXA λ=  

In the above equation, λ  is the eigenvalue and ][X  is the eigenvector corresponding to λ .  
As you can see, if we know λ  for the above example we can calculate the natural frequency 
of the vibration 

λω =   
Why are the natural frequencies of vibration important?  Because you do not want to have a 
forcing force on the spring-mass system close to this frequency as it would make the 
amplitude iA  very large and make the system unstable. 
 
What is the general definition of eigenvalues and eigenvectors of a square matrix? 

If ][A  is a nn×  matrix, then 0][


≠X  is an eigenvector of ][A  if  
][][][ XXA λ=  

where λ  is a scalar and 0][ ≠X .  The scalar λ  is called the eigenvalue of ][A and ][X  is 
called the eigenvector corresponding to the eigenvalueλ . 
 
How do I find eigenvalues of a square matrix? 

To find the eigenvalues of a n× n matrix ][A , we have 
][][][ XXA λ=  

0][][][ =− XXA λ  
0]][[][][ =− XIXA λ  

0]])[][[]([ =− XIA λ  
Now for the above set of equations to have a nonzero solution, 

0])[]det([ =− IA λ  
This left hand side can be expanded to give a polynomial in λ  and solving the above 
equation would give us values of the eigenvalues.  The above equation is called the 
characteristic equation of ][A . 
For a ][A  nn×  matrix, the characteristic polynomial of A  is of degree n  as follows 

0])[]det([ =− IA λ  
giving 

02
2

1
1 =+−−+++ −−

n
nnn ccc λλλ  

Hence. this polynomial has n  roots. 
 
Example 1 
Find the eigenvalues of the physical problem discussed in the beginning of this chapter, that 
is, find the eigenvalues of the matrix 









−

−
=

75.075.0
5.13

][A  
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Solution 









−−

−−
=−

λ
λ

λ
75.075.0

5.13
][][ IA  

[ ] [ ] 0)5.1)(75.0()75.0)(3()det( =−−−−−=− λλλ IA  
0125.1375.025.2 2 =−+−− λλλ  

0125.175.32 =+− λλ  

)1(2
)125.1)(1(4)75.3()75.3( 2 −−±−−

=λ  

    
2

092.375.3 ±
=  

    3288.0,421.3=  
So the eigenvalues are 3.421 and 0.3288. 
 
Example 2 
Find the eigenvectors of 









−

−
=

75.075.0
5.13

A  

Solution 
The eigenvalues have already been found in Example 1 as 

3288.0,421.3 21 == λλ  
Let  









=

2

1][
x
x

X  

be the eigenvector corresponding to  
421.31 =λ  

Hence 
0]])[[]([ 1 =− XIA λ   

0
10
01

421.3
75.075.0

5.13

2

1 =
























−








−

−
x
x

 









=
















−−
−−

0
0

671.275.0
5.1421.0

2

1

x
x

 

If 
sx =1  

then  

sx
xs

2808.0
05.1421.0

2

2

−=
=−−

 

The eigenvector corresponding to 421.31 =λ  then is  
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−

=
s

s
X

2808.0
][  

            







−

=
2808.0
1

s  

The eigenvector corresponding to  
421.31 =λ   

is  

 







− 2808.0

1
 

Similarly, the eigenvector corresponding to  
3288.02 =λ   

is  









781.1
1

 

 
Example 3 
Find the eigenvalues and eigenvectors of  

















−
−−=

005.0
5.05.05.0

105.1
][A  

Solution 
The characteristic equation is given by 

0])[]det([ =− IA λ  

0
05.0

5.05.05.0
105.1

det =
















−−
−−−

−

λ
λ

λ
  

0)]5.0)(5.0()0)(5.0)[(1()]0)(5.0())(5.0)[(5.1( =−−−−+−−−−− λλλλ  
025.025.12 23 =+−+− λλλ  

To find the roots of the characteristic polynomial equation 

025.025.12 23 =+−+− λλλ  

we find that the first root by observation is 

1=λ  

as substitution of 1=λ gives 

025.0)1(25.1)1(2)1( 23 =+−+−  

         00 =  

So 
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)1( −λ  

is a factor of  

25.025.12 23 +−+− λλλ . 

To find the other factors of the characteristic polynomial, we first conduct long division 

25.0
25.025.121

2

23
++−
+−+−−

λλ
λλλλ  

            23 λλ +−  
            ______________________ 

            
λλ

λλ

−

+−
2

2 25.025.1
 

               
25.025.0
25.025.0

+−
+−

λ
λ

 

Hence 

)25.0)(1(25.025.12 223 ++−−=+−+− λλλλλλ  

To find zeroes of 25.02 ++− λλ , we solve the quadratic equation, 

 025.02 =++− λλ  
to give 

=λ
)1(2

)25.0)(1)(4()1()1( 2

−

−−±−
 

   
2

01
−
±−

=  

   5.0,5.0=  
So 

5.0=λ and 5.0=λ  are the zeroes of  

5.02 ++− λλ   

giving 

)5.0)(5.0(25.02 −−−=++− λλλλ                       

Hence 

025.025.12 23 =+−+− λλλ  

can be rewritten as 

0)5.0)(5.0)(1( =−−−− λλλ  

to give the roots as 
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5.0,5.0,1=λ  

These are the three roots of the characteristic polynomial equation and hence the eigenvalues 

of matrix [A]. 

Note that there are eigenvalues that are repeated.  Since there are only two distinct 
eigenvalues, there are only two eigenspaces.  But, corresponding to 5.0=λ  there should be 
two eigenvectors that form a basis for the eigenspace corresponding to 5.0=λ . 
Given  

0][)][( =− XIA λ  
then 
















=

































−−
−−−

−

0
0
0

05.0
5.05.05.0

105.1

3

2

1

x
x
x

λ
λ

λ
 

For 5.0=λ , 
















=

































−−
−−

0
0
0

5.005.0
5.005.0

101

3

2

1

x
x
x

 

Solving this system gives 
axbxax ==−= 321 ,,  

So 















−
=

















a
b
a

x
x
x

3

2

1

 

       















+















−
=

0

0
0 b
a

a
  

     















+















−
=

0
1
0

1
0
1

ba  

So the vectors 














−

1
0
1

 and 
















0
1
0

 form a basis for the eigenspace for the eigenvalue 5.0=λ  and 

are the two eigenvectors corresponding to 5.0=λ . 
For 1=λ , 
















=

































−−
−−−

0
0
0

105.0
5.05.05.0

105.0

3

2

1

x
x
x

 

Solving this system gives 
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axaxax 5.0,5.0, 321 −=−==  
The eigenvector corresponding to 1=λ  is  

















−
−=

















−
−

5.0
5.0

1

5.0
5.0 a
a
a

a
 

 Hence the vector  

















−
−

5.0
5.0

1
  

is a basis for the eigenspace for the eigenvalue of 1=λ , and is the eigenvector corresponding 
to 1=λ . 
 
What are some of the theorems of eigenvalues and eigenvectors? 

Theorem 1: If ][A  is a nn×  triangular matrix – upper triangular, lower triangular or 
diagonal, the eigenvalues of ][A  are the diagonal entries of ][A . 
Theorem 2: 0=λ  is an eigenvalue of ][A  if ][A  is a singular (noninvertible) matrix. 
Theorem 3: ][A  and  T][A  have the same eigenvalues. 
Theorem 4:  Eigenvalues of a symmetric matrix are real. 
Theorem 5: Eigenvectors of a symmetric matrix are orthogonal, but only for distinct 
eigenvalues. 
Theorem 6: )det(A  is the product of the absolute values of the eigenvalues of ][A . 
 
Example 4 
What are the eigenvalues of  



















−

=

2.7062
05.759
0037
0006

][A  

Solution 

Since the matrix ][A  is a lower triangular matrix, the eigenvalues of ][A  are the diagonal 
elements of ][A .  The eigenvalues are 

2.7,5.7,3,6 4321 −==== λλλλ  
 
Example 5 
One of the eigenvalues of 

 
















−
=

712
953
265

][A  
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is zero.  Is ][A  invertible? 
Solution 

0=λ  is an eigenvalue of ][A , that implies ][A  is singular and is not invertible. 
 
Example 6  
Given the eigenvalues of 















 −
=

5.818
255.3
65.32

][A  

are 
711.4,33.12,547.1 321 ==−= λλλ  

What are the eigenvalues of ][B  if 
















−=

5.826
155.3
85.32

][B  

Solution 

Since TAB ][][ = , the eigenvalues of ][A  and ][B  are the same.  Hence eigenvalues of ][B  
also are 

711.4,33.12,547.1 321 ==−= λλλ  
 
Example 7  
Given the eigenvalues of 















 −
=

5.818
255.3
65.32

][A  

are 
711.4,33.12,547.1 321 ==−= λλλ  

Calculate the magnitude of the determinant of the matrix. 
Solution 
Since 

321]det[ λλλ=A  

            711.433.12547.1−=  
            88.89=  
 

How does one find eigenvalues and eigenvectors numerically? 
One of the most common methods used for finding eigenvalues and eigenvectors is the 
power method.  It is used to find the largest eigenvalue in an absolute sense.  Note that if this 
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largest eigenvalues is repeated, this method will not work.  Also this eigenvalue needs to be 
distinct.  The method is as follows: 

1. Assume a guess ][ )0(X  for the eigenvector in  
][][][ XXA λ=  

equation.  One of the entries of ][ )0(X  needs to be unity. 
2. Find  

][][][ )0()1( XAY =  
3. Scale ][ )1(Y  so that the chosen unity component remains unity.  

][][ )1()1()1( XY λ=  
4. Repeat steps (2) and (3) with  

][][ )1(XX =  to get ][ )2(X . 
5. Repeat the steps 2 and 3 until the value of the eigenvalue converges.   

If sE is the pre-specified percentage relative error tolerance to which you would like the 
answer to converge to, keep iterating until 

 si

ii

E≤×
−
+

+

100)1(

)()1(

λ
λλ  

where the left hand side of the above inequality is the definition of absolute percentage 
relative approximate error, denoted generally by sE  A pre-specified percentage relative 
tolerance of  m−× 2105.0  implies at least m  significant digits are current in your answer.  
When the system converges, the value of λ  is the largest (in absolute value) eigenvalue of 

][A . 
 
Example 8 
Using the power method, find the largest eigenvalue and the corresponding eigenvector of  

















−
−−=

005.0
5.05.05.0

105.1
][A  

Solution 
Assume 
















=

1
1
1

][ )0(X  

































−
−−=

1
1
1

005.0
5.05.05.0

105.1
][][ )0(XA  
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−
−=

5.0
5.0

5.2
 

















−
−=

2.0
2.0

1
5.2)1(Y  

5.2)1( =λ  
We will choose the first element of ][ )0(X  to be unity. 

















−
−=

2.0
2.0

1
][ )1(X  

















−
−

















−
−−=

2.0
2.0

1

005.0
5.05.05.0

105.1
][][ )1(XA  

               
















−
−=

5.0
5.0

3.1
 

















−
−=

3846.0
3846.0
1

3.1][ )2(X  

3.1)2( =λ  

















−
−=

3846.0
3846.0
1

][ )2(X  

The absolute relative approximate error in the eigenvalues is 

100)2(

)1()2(

×
−

=
λ

λλε a  

      100
5.1

5.13.1
×

−
=  

      %307.92=  
Conducting further iterations, the values of )(iλ and the corresponding eigenvectors is given 
in the table below 
 

i  )(iλ  ][ )(iX  (%)aε  
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1 2.5 
















−
−

2.0
2.0

1
 _____ 

2 1.3 
















−
−

38462.0
38462.0
1

 92.307 

3 1.1154 
















−
−

44827.0
44827.0
1

 16.552 

4 1.0517 
















−
−

47541.0
47541.0
1

 6.0529 

5 1.02459 
















−
−

48800.0
48800.0
1

 1.2441 

The exact value of the eigenvalue is 1=λ   
and the corresponding eigenvector is 

















−
−=

5.0
5.0

1
][X  

 
 
Key Terms: 
Eigenvalue 
Eigenvectors 
Power method  
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Chapter 04.11 
Cholesky and LDLT Decomposition 
 
 
 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. understand why the LDLT algorithm is more general than the Cholesky algorithm,  
2. understand the differences between the factorization phase and forward solution 

phase  in the Cholesky and LDLT algorithms,  
3. find the factorized [L] and [D] matrices,  
4. obtain the forward solution phase,  
5. obtain the diagonal scaling phase, 
6. obtain the backward solution phase, 
7. solve a set of simultaneous linear equations using LDLT algorithm. 

 
 
Introduction 
Solving large (and sparse) system of simultaneous linear equations (SLE) has been (and 
continues to be) a major challenging problem for many real-world engineering/science 
applications [1-2]. In matrix notation, at set of SLE can be represented as: 

][]][[ bxA =                                            (1) 
where 

][A = known coefficient matrix, with dimension nn×  
][b = known right-hand-side (RHS) 1×n vector 
][x = unknown 1×n  vector. 

 
Symmetrical Positive Definite (SPD) SLE 

For many practical SLE, the coefficient matrix ][A  (see Equation (1)) is Symmetric Positive 
Definite (SPD).  In this case, the efficient a 3-step Cholesky algorithm [1-2] can be used.  A 
symmetric matrix nnA ×][ is SPD if either of the following conditions is satisfied: 

(a) If each and every determinant of sub-matrix ),...,2,1( niAii = is positive, or.. 

(b) If 0>AyyT  for any given vector 0][ 1



≠×ny  
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Example 1 
Find if  

















−
−−

−
=

110
121

012
][A   

is SPD? 
 
Solution 

Criterion a: If each and every determinant of sub-matrix ),...,2,1( niAii = is positive. 
The given 33×  matrix ][A is symmetrical, because jiij aa = . Furthermore, one has 

[ ] 022det 11 >==×A  

[ ]

03
21
12

det 22

>=

−
−

=×A  

[ ]

01
110
121

012
det 33

>=

−
−−

−
=×A  

Hence ][A is SPD. 
 
Criterion (b): If 0>AyyT  for any given vector 0][ 1



≠×ny  
For any given vector  

0

3

2

1




≠















=

y
y
y

y ,  

one computes 

[ ]

( ) { }
( ) { }32

2
3

2
2

2
1

2
21

32
2
3

2
221

2
1

3

2

1

321

2

2222

110
121

012

yyyyyyy

yyyyyyy

y
y
y

yyyAyyT

−+++−=

−++−=

































−
−−

−
=

 

( ) ( ) 02
32

2
1

2
21 >−++−= yyyyy  

Since the above scalar is always positive, hence matrix ][A is SPD. 
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Step 1: Matrix Factorization phase 

In this step, the coefficient matrix ][A that is SPD can be decomposed (or factorized) into 
][][][ UUA T=                                    (2) 

where,  
][U  is a nn×  upper triangular matrix. 

The following simple 33×  matrix example will illustrate how to find the matrix ][U . 
Various terms of the factorized matrix ][U can be computed/derived as follows (see Equation 
(2)): 
                                    
































=

















33

2322

131211

332313

2212

11

333231

232221

131211

00
00

00

u
uu
uuu

uuu
uu

u

aaa
aaa
aaa

                       (3) 

Multiplying two matrices on the right-hand-side (RHS) of Equation (3), and then equating 
each upper-triangular RHS terms to the corresponding ones on the upper-triangular left-hand-
side (LHS), one gets the following 6 equations for the 6 unknowns in the factorized matrix 

][U . 

1111 au = ;
11

12
12 u

a
u = ;

11

13
13 u

a
u =                                     (4) 

( )2
1

2
122222 uau −= ;

22

131223
23 u

uua
u

−
= ; ( )2

1
2
23

2
133333 uuau −−=                                      (5) 

In general, for a nn×  matrix, the diagonal and off-diagonal terms of the factorized matrix 
][U can be computed from the following formulas: 

( )
2
1

1

1

2 







−= ∑

−

=

i

k
kiiiii uau                                                                                                 (6) 

ii

i

k
kjkiij

ij u

uua
u

∑
−

=

−
=

1

1                                  (7) 

It is noted that if ji = , then the numerator of Equation (7) becomes identical to the terms 
under the square root in Equation (6). In other words, to factorize a general term iju , one 
simply needs to do the following steps: 
Step 1.1: Compute the numerator of Equation (7), such as  

∑
−

=

−=
1

1

i

k
kjkiij uuaSum  

Step 1.2 If iju is an off-diagonal term (say, ji < ) then from Equation (7) 

ii
ij u

Sumu =  

else, if iju is a diagonal term (that is, ji = ), then from Equation (6) 
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Sumuii =  
As a quick example, one computes: 

55

474537352725171557
57 u

uuuuuuuua
u

−−−−
=          (8) 

Thus, for computing )7,5( == jiu , one only needs to use the (already factorized) data in 
columns )5(# =i , and )7(# =j of ][U , respectively. 

In general, to find the (off-diagonal) factorized term iju , one only needs to utilize the 
“already factorized” columns i# , and j#  information (see Figure 1). For example, if 5=i , 
and 7=j , then Figure 1 will lead to the same formula as shown earlier in Equation (7), or in 
Equation (8). Similarly, to find the (diagonal) factorized term iiu , one simply needs to utilize 
columns i# , and i#  (again!) information (see Figure 1). In this case, Figure 1 will lead to 
the same formula as shown earlier in Equation (6). 

k = 1

k = 2

k = 3

k = 4

iiu iju

ju4

ju3

ju2

ju1

iu4

iu3

iu2

iiu

i = 5

Col. # i=5 Col. # j=7

 
Figure 1 Cholesky Factorization for the term iju  

Since the square root operation involved during the Cholesky factorization phase (see 
Equation (6)), one must make sure the term under the square root is non-negative. This 
requirement satisfied by ][A being SPD.  
Step 2: Forward Solution phase 
Substituting Equation (2) into Equation (1), one gets 

][]][[][ bxUU T =                                                                                      (9) 
Let us define 

][][][ yxU ≡                                                                                                          (10) 
Then, Equation (9) becomes 

][][][ byU T =                                                                                                             (11) 
Since TU ][ is a lower triangular matrix, Equation (11) can be efficiently solved for the 
intermediate unknown vector ][y , according to the order  
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ny

y
y

.

.
2

1

  

hence the name “forward solution”. 
As a quick example, one has from Equation (11) 
















=

































3

2

1

3

2

1

332313

2212

11

0
00

b
b
b

y
y
y

uuu
uu

u

                                                                                (12) 

From the 1st row of Equation (12), one gets 
1111 byu =  

11

1
1 u

by =                                                                                                                      (13) 

From the 2nd row of Equation (12), one gets 
2222112 byuyu =+  

22

112
22 u

yuby −=                                (14) 

Similarly 

33

2231133
3 u

yuyuby −−
=                                                             (15) 

In general, from the thj  row of Equation (12), one has 

jj

j

i
iijj

j u

yub
y

∑
−

=

−
=

1

1                                                          (16) 

Step 3: Backward Solution phase 

Since ][U is an upper triangular matrix, Equation (10) can be efficiently solved for the 
original unknown vector ][x , according to the order 























−

−

1

2

1

.
x

x
x
x

n

n

n

 

and hence the name “backward solution”. 
As a quick example, one has from Equation (10) 
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=

































3

2

1

3

2

1

33

2322

131211

00
0

y
y
y

x
x
x

u
uu
uuu

                                            (17) 

From the last (or rdthn 3= ) row of Equation (17), one has  
3333 yxu = . 

hence  

33

3
3 u

y
x =                                                  (18) 

Similarly 

  
22

3232
2 u

xuy
x

−
=                                   (19)   

and 

11

3132121
1 u

xuxuy
x

−−
=                         (20) 

In general, one has  

jj

n

ji
ijij

j u

xuy
x

∑
+=

−
= 1                                                                                                     (21) 

Amongst the above 3-step Cholesky algorithms, factorization phase in step 1 consumes 
about 95% of the total SLE solution time. 

If the coefficient matrix ][A is symmetrical but not necessarily positive definite, then the 
above Cholesky algorithms will not be valid. In this case, the following TLDL factorized 
algorithms can be employed 

TLDLA ]][][[][ =                                                                                (22) 
For example 
















































=

















100
10

1

00
00
00

1
01
001

32

3121

33

22

11

3231

21

333231

232221

131211

l
ll

d
d

d

ll
l

aaa
aaa
aaa

                 (23) 

 
Multiplying the three matrices on the RHS of Equation (23), then equating the resulting 
upper-triangular RHS terms of Equation (23) to the corresponding ones on the LHS, one 
obtains the following formulas for the diagonal ][D , and lower-triangular ][L matrices 

  ∑
−

=

−=
1

1

2
j

k
kkjkjjjj dlad                                                             (24)                     











×







−= ∑

−

= jj

j

k
jkkkikijij d

ldlal 11

1

                                          (25)                                 

Thus, the TLDL algorithms can be summarized by the following step-by-step procedures. 
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Step1: Factorization phase 

TLDLA ]][][[][ =                                        (22, repeated) 
 
Step 2: Forward solution and diagonal scaling phase 
Substituting Equation (22) into Equation (1), one gets 

][][]][][[ bxLDL T =                                                                              (26) 
Let us define 

][][][ yxL T =  
















=

































3

2

1

3

2

1

32

3121

100
10

1

y
y
y

x
x
x

l
ll

                          (27) 

1,2,...,1,;
1

−=−= ∑
+=

nniforxlyx
n

ik
kkiii                                                             (28) 

Also, define 
 ][]][[ zyD =  
















=

































3

2

1

3

2

1

33

22

11

00
00
00

z
z
z

y
y
y

d
d

d
                                                      (29) 

nifor
d
zy

ii

i
i ......,,3,2,1, ==                   (30) 

Then Equation (26) becomes 
][]][[ bzL =  
















=

































3

2

1

3

2

1

3231

21

1
01
001

b
b
b

z
z
z

ll
l                                                                   (31) 

niforzLbz
i

k
kikii ......,,3,2,1

1

1
=−= ∑

−

=

                           (32) 

Equation (31) can be efficiently solved for the vector [ ]z , and then Equation (29) can be 
conveniently (and trivially) solved for the vector [ ]y . 
 
Step 3: Backward solution phase 

In this step, Equation (27) can be efficiently solved for the original unknown vector [ ]x . 
 
Example 2 

Using the Cholesky algorithm, solve the following SLE system for the unknown vector [ ]x . 
][]][[ bxA =  

where  
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[ ]
















−
−−

−
=

110
121

012
A  
















=

0
0
1

][b  

Solution 

The factorized, upper triangular matrix [ ]U can be computed by either referring to Equations 
(6-7), or looking at Figure 1, as following: 
Row 1 of [U] is given below. 

414.1
2

1111

=
=

= au

 

7071.0
414.1

1
11

12
12

−=

−
=

=
u
a

u

 

0
414.1
0

11

13
13

=

=

=
u
a

u

 

Row 2 of [U] is given below 

( )

( ){ }
( )

225.1
7071.02

2
2

2
1

2
12

2
1

11

1

2
2222

=

−−=

−=









−= ∑
=−

=

u

uau
i

k
ki
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( )( )

8165.0
225.1

07071.01
225.1

1 1312

22

11

1
23

23

−=

−−−
=

×−−
=

−
=

∑
=−

=

uu
U

uua
u

i

k
kjki

 

Row 3 of [U] is given below 

( )

{ }
( ) ( )

5774.0
8165.001 22

2
1

2
23

2
1333

2
1

21

1

2
3333

=

−−−=

−−=









−= ∑
=−

=

uua

uau
i

k
ki

 

Thus, the factorized matrix  

[ ]















−

−
=

5774.000
8165.0225.10
07071.0414.1

U  

The forward solution phase, shown in Equation (11), becomes 
[ ] [ ] [ ]byU T =  
















=

































−
−

0
0
1

5774.08165.00
0225.17071.0
00414.1

3

2

1

y
y
y

 

Thus, Equation (16) can be used to solve for [y] as 
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( )( ) ( )( )
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The backward solution phase, shown in Equation (10), becomes: 
[ ] [ ] [ ]yxU =  
















=
































−

−
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4082.0
7071.0

5774.000
8165.0225.10
07071.0414.1

3

2

1

x
x
x

 

Thus, Equation (21) can be used to solve 

1
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Hence 
















=

1
1
1

][x  

 
Example 3 

Using the LDLT algorithm, solve the following SLE system for the unknown vector [ ]x . 
][]][[ bxA =  

where  

[ ]
















−
−−

−
=

110
121

012
A  
















=

0
0
1

][b  

Solution 

The factorized matrices ][D and ][L can be computed from Equation (24) and Equation (25), 
respectively. 

[ ] [ ]LandDofmatricesofColumn

d
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d
a

d
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( ) ( )

( )( )( )

[ ] [ ]LandDmatricesofColumn

d

ldla
l

alwaysl

dl

dlad

j

k

j

k
kkjk

2

6667.0
5.1
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( ) ( ) ( ) ( )
[ ] [ ]LandDmatricesofColumndldl

dlad
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3
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1
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2
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2
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1

2
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−−=

−= ∑
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Hence 
 

[ ]















=

3333.000
05.10
002

D  

and 

[ ]
















−
−=

16667.00
015.0
001

L  

The forward solution shown in Equation (31) becomes: 
[ ] [ ] [ ]bzL =  
















=
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0
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1

1667.00
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3

2

1

z
z
z

, or 

∑
−

=

−=
1

1

i

k
kikii zlbz               (32, repeated) 

Hence 
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( )( )

( )( ) ( )( )
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The diagonal scaling phase, shown in Equation (29) becomes 
[ ] [ ] [ ]zyD =  
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Hence 
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The backward solution phase can be found by referring to Equation (27) 
[ ] [ ] [ ]yxL T =  
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                (28, repeated) 
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Hence 
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Hence 
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Through this numerical example, one clearly sees that the “square root operations” have 
NOT  been involved during the entire LDLT algorithms. Thus, the coefficient matrix [A], 
shown in Equation (1) is NOT required to be SPD. 
Re-ordering Algorithms For Minimizing Fill-in Terms [1,2]. 

During the factorization phase (of Cholesky, or TLDL algorithms), many “zero” terms in the 
original/given matrix ][A  will become “non-zero” terms in the factored matrix ][U . These 
new non-zero terms are often called as “fill-in” terms (indicated by the symbol F ). It is, 
therefore, highly desirable to minimize these fill-in terms, so that both computational 
time/effort and computer memory requirements can be substantially reduced. For example, 
the following matrix ][A  and vector ][b are given: 

[ ]



























=

1100102
0440030
0066040
1008850
03451107
20007112

A
                                      (33) 



























=

14
47
70
94

129
121

][b
                                                                                           (34) 
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The Cholesky factorization matrix ][U , based on the original matrix ][A  (see Equation 33) 
and Equations (6-7), or Figure 1, can be symbolically computed as 

[ ]



























×
×

×
××

××××
×××

=

00000
0000

000
00

0
000

F
FF

FF
F

U
                                                       (35) 

In Equation (35), the symbols x , and F  represents the “non-zero” and “fill-in” terms, 
respectively. 

In practical applications, however, it is always a necessary step to rearrange the 
original matrix ][A  through re-ordering algorithms (or subroutines) [Refs 1-2] and produce 
the following integer mapping array 

IPERM (new equation #) = {old equation #}                    (36) 
such as,  for this particular example: 



























=



























1
2
3
4
5
6

6
5
4
3
2
1

IPERM
                                                            (37) 

Using the above results (see Equation 37), one will be able to construct the following re-
arranged matrices: 

[ ]



























=

11270002
71105430
0588001
0406600
0300440
2010011

*A
                                                   (38) 

and 



























=

121
129
94
70
47
14

][ *b
                                                                      (39) 

In the original matrix A (shown in Equation 33), the nonzero term A  (old row 1, old 
column 2) = 7 will move to new location *A of the new matrix  (new row 6, new column 5

The non zero term 

) = 
7, etc. 

A  (old row 3, old column 3) = 88 will move to *A  (new row 4, new 
column 4) = 88, etc. 

The value of b  (old row 4) = 70 will be moved to (or located at) *b  (new row 3) = 70, 
etc. 
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Now, one would like to solve the following modified system of linear equations (SLE) 
for ][ *x , 

][]][[ *** bxA =                                                                                               (40) 
rather than to solve the original SLE (see Equation (1)). The original unknown vector }{x can 

be easily recovered from ][ *x  and [ ]IPERM , shown in Equation (37). 
The factorized matrix ][ *U can be “symbolically” computed from ][ *A as (by referring to 
either Figure 1 or Equations 6-7): 

[ ]



























×
××

××
××
××

×××

=

00000
0000

000
0000
0000

000

*

F
U

                                               (41) 

You can clearly see the big benefits of solving the SLE shown in Equation (40), instead of 
solving the original Equation (1), since the factorized matrix ][ *U has only 1 fill-in term (see 
the symbol “ F ” in Equation 41), as compared to six fill-in-terms occurred in the factorized 
matrix ][U  as shown in Equation 35. 
 
On-Line Chess-Like Game For Reordering/Factorized Phase [4]. 
Based on the discussions presented in the previous section 2 (about factorization phase), and 
section 3 (about reordering phase), one can easily see the similar operations between the 
symbolic, numerical factorization and reordering (to minimize the number of fill-in terms) 
phases of sparse SLE. 

In practical computer implementation for the solution of SLE, the reordering phase is 
usually conducted first (to produce the mapping between “old↔new” equation numbers, as 
indicated in the integer array IPERM(-), see Equations 36-37). 

Then, the sparse symbolic factorization phase is followed by using either Cholesky 
Equations 6-7, or the TLDL Equations 24-25 (without requiring the actual/numerical values to 
be computed). The reason is because during the symbolic factorization phase, one only 
wishes to find the number (and the location) of non-zero fill-in terms. This symbolic 
factorization process is necessary for allocating the “computer memory” requirement for the 
“numerical factorization” phase which will actually compute the exact numerical values of 

][ *U , based on the same Cholesky Equations (6-7) (or the TLDL  Equations (24-25)). 
In this work, a chess-like game (shown in Figure 2, Ref. [4]) has been designed with 

the following objectives: 
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Figure 2 A Chess-Like Game For Learning to Solve SLE. 
 

(A) Teaching undergraduates the process how to use the reordering output IPERM(-), see 
Equations (36-37) for converting the original/given matrix ][A , see Equation (33), 
into the new/modified matrix ][ *A , see Equation (38). This step is reflected in Figure 
2, when the “Game Player” decides to swap node (or equation) i (say 2=i ) with 
another node (or equation) j, and click the CONFIRM icon! Since node i=2 is 
currently connected to nodes j =4, 6, 7, 8,  swapping node 2=i  with the above 
nodes j will NOT change the number/pattern of the fill-in terms. However, if node 

2=i  is swapped with node j=1, or 3 or 5, then the fill-in terms pattern may change 
(for better or worse)! 

(B) Helping undergraduates to understand the “symbolic” factorization” phase by 
symbolically utilizing the Cholesky factorized Equations (6-7). This step is illustrated 
in Figure 2, for which the “game player” will see (and also hear the computer 
animated sound, and human voice) the non-zero terms (including fill-in terms) of the 
original matrix ][A  to move to the new locations in the new/modified matrix ][ *A . 

(C) Helping undergraduates to understand the numerical factorization phase, by 
numerically utilizing the same Cholesky factorized Equations (6-7). 

(D) Teaching undergraduates to understand existing reordering concepts, or to discover 
new reordering algorithms. 

 
Further Explanation on the Developed Game 

1. In the above chess-like game, which is available on-line [4], powerful features of 
FLASH computer environment [3], such as animated sound, human voice, motions, 
graphical colors etc… have been incorporated and programmed into the developed 
game-software for more appeal to game players/learners. 

2. In the developed chess-like game, fictitious monetary (or any kind of ‘scoring 
system”) is rewarded (and broadcasted by computer animated human voice) to game 
players, based on how he/she swaps the node (or equation) numbers, and 
consequently based on how many fill-in F terms occurred. In general, less fill-in 
terms introduced will result in more rewards. 

3. Based on the original/given matrix ][A , and existing re-ordering algorithms (such as 
the Reverse Cuthill-Mckee, or RCM algorithms [1-2]) the number of fill-in terms F 
can be computed using RCM algorithms. This internally generated information will 
be used to judge how good the players/learners are, and/or broadcast “congratulations 
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message” to a particular player who discovers a new “chess-like move” (or, swapping 
node) strategies which are even better than RCM algorithms. 

4. Initially, the player(s) will select the matrix size ( 88× , or larger is recommended), 
and the percentage (50%, or larger is suggested) of zero-terms (or sparsity of the 
matrix). Then, the START Game icon will be clicked by the player. 

5. The player will then CLICK one of the selected node i (or equation) numbers 
appearing on the computer screen. The player will see those nodes j which are 
connected to node i (based on the given/generated matrix ][A ). The player then has to 
decide to swap node i  with one of the possible node j . After confirming the player’s 
decision, the outcomes/results will be announced by the computer animated human 
voice, and the monetary-award will (or will not) be given to the players/learners, 
accordingly. In this software, a maximum of $1,000,000 can be earned by the player, 
and the exact dollar amount will be inversely proportional to the number of fill-in 
terms occurred (based on the player’s decision on how to swap node i  with another 
node j ). 

6. The next player will continue to play, with his/her move (meaning to swap the thi  
node with the thj  node) based on the current best non-zero terms pattern of the 
matrix. 
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05.01 
History of Interpolation 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. Know the history of Interpolation and its current uses by the HNMI. 
 
History 

 Sir Edmund Whittaker, a professor of Numerical Mathematics at the University of 
Edinburgh from 1913 to 1923, observed “the most common form of interpolation occurs 
when we seek data from a table which does not have the exact values we want.”  Throughout 
history, interpolation has been used in one form or another for just about every purpose under 
the sun. 
Speaking of the sun, some of the first surviving evidence of the use of interpolation came 
from ancient Babylon and Greece.  Around 300 BC, they were using not only linear, but also 
more complex forms of interpolation to predict the positions of the sun, moon, and the 
planets they knew of.  Farmers, timing the planting of their crops, were the primary users of 
these predictions.  Also in Greece sometime around 150 BC, Hipparchus of Rhodes used 
linear interpolation to construct a “chord function”, which is similar to a sinusoidal function, 
to compute positions of celestial bodies. 
 Farther east, Chinese evidence of interpolation dates back to around 600 AD.  Liu 
Zhuo used the equivalent of second order Gregory-Newton interpolation to construct an 
“Imperial Standard Calendar”.  In 625 AD, Indian astronomer and mathematician 
Brahmagupta introduced a method for second order interpolation of the sine function and, 
later on, a method for interpolation of unequal-interval data. 
 Many similar land-based purposes were found for interpolation over the ages, but 
ocean navigation was found to be one of the most important applications for centuries.  
Tables of special function values were constructed using numerical methods, and seafarers 
used certain ones to determine latitude and longitude values.  The French government started 
production on an extensive set of such tables when the metric system was introduced.  
Ideally, one would want mathematicians to construct a large set of tables due to their 
proficiency at the subject.  However, the primary source of work on the project ended up 
being hairdressers who had lost their gaudy-wigged customers to the guillotine. 
 The unfortunate truth about special function tables is that most of them were 
plagiarized.  Since the “computers”, the workers who carried out and recorded the 
calculations, were prone to making many errors during the creation of these daunting tables, 
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plagiarism only propagated more errors.  Charles Babbage tried to solve this problem with 
the invention of his “difference engine”, a mechanical computer programmed by the use of 
punch cards.  On the side, Babbage also tried inventing a system that would choose winning 
horse race numbers, hoping to raise extra money.  Although he was not short of funds, his 
life ran short and never saw the completion of the invention.  Over a century and a quarter 
later, as we plunge into the nano-technology era, Babbage is now considered the grandfather 
of modern computing. 
 During the Great Depression, one final burst of manual table-making found its way 
into the United States.  The Works Progress Administration began the Mathematical Tables 
Project shortly before World War II.  As with the French project, the desired 
“mathematician” workers ended up being unskilled—this time to the point that negative 
numbers were puzzling.  The solution: black pencils for positive numbers and red ones for 
negative numbers.  Having each calculation in this project iterated twice (each by a different 
person), and extensive proof reading carried out, these tables were “possibly the most 
accurate ever produced”.  Many of them were collected in a book by Milton Abromowitz and 
Irene Stegun, which is still in worldwide use today.  With computers (not the people type, 
either), tables are no longer manually constructed, but the Australian Government produces 
life tables which describe mortality rates.  Relevant to the life insurance industry and the 
study of demography, “these tables are extended using modern interpolation methods.”  No 
matter how advanced or extensive, interpolation will always be needed to find values in 
modern tables due to their nature.  Since they aren’t continuous functions, there will be 
infinitely many missing values. 
 Two of the methods of interpolation taught at the HNMI are credited to Newton and 
Lagrange.  Newton began his work on the subject in 1675, which “laid the foundation of 
classical interpolation theory”.  In 1795, Lagrange published the interpolation formula now 
known under his name, despite the fact that Waring had already produced the same formula 
sixteen years earlier. 
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Chapter 05.02 
Direct Method of Interpolation 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. apply the direct method of interpolation, 
2. solve problems using the direct method of interpolation, and 
3. use the direct method interpolants to find derivatives and integrals of discrete 

functions. 
 
What is interpolation? 

Many times, data is given only at discrete points such as ( ),, 00 yx  ( )11, yx , ......, ( )11, −− nn yx , 
( )nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a 
continuous function ( )xf  may be used to represent the 1+n  data values with ( )xf  passing 
through the 1+n  points (Figure 1).  Then one can find the value of y  at any other value of 
x .  This is called interpolation.   
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation.   
 So what kind of function ( )xf  should one choose?  A polynomial is a common 
choice for an interpolating function because polynomials are easy to  

(A) evaluate, 
(B) differentiate, and 
(C) integrate 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes 
through the 1+n  points.  One of the methods of interpolation is called the direct method.  
Other methods include Newton’s divided difference polynomial method and the Lagrangian 
interpolation method.  We will discuss the direct method in this chapter. 
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        Figure 1   Interpolation of discrete data. 

 
Direct Method 

The direct method of interpolation is based on the following premise.  Given 1+n  data 
points, fit a polynomial of order n  as given below  
 n

n xaxaay +++= ...............10                                                                           (1) 
through the data, where naaa ,,........., 10  are 1+n  real constants.  Since 1+n  values of y  are 
given at 1+n  values of x , one can write 1+n  equations.  Then the 1+n  constants, 

naaa ,,........., 10  can be found by solving the 1+n  simultaneous linear equations.  To find the 
value of y  at a given value of x , simply substitute the value of x  in Equation 1.   
 But, it is not necessary to use all the data points.  How does one then choose the order 
of the polynomial and what data points to use?  This concept and the direct method of 
interpolation are best illustrated using examples. 
 
Example 1 
The upward velocity of a rocket is given as a function of time in Table 1. 
 

Table 1  Velocity as a function of time. 
t  (s) )(tv  (m/s) 
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 

( )00, yx  

( )11, yx  

( )22, yx  
 

( )33, yx  

( )xf  

x  

y  
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Determine the value of the velocity at 16=t  seconds using the direct method of interpolation 
and a first order polynomial. 
 
Solution 
For first order polynomial interpolation (also called linear interpolation), the velocity given 
by 
 ( ) taatv 10 +=  

 
         Figure 3   Linear interpolation. 
 

 
Figure 2   Graph of velocity vs. time data for the rocket example. 

( )00, yx  

( )11, yx  

( )xf1  

x

y  
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Since we want to find the velocity at 16=t , and we are using a first order polynomial, we 
need to choose the two data points that are closest to 16=t  that also bracket 16=t  to 
evaluate it.  The two points are 150 =t  and 201 =t .  
 Then 
 ( ) 78.362 ,15 00 == tvt  
 ( ) 35.517 ,20 11 == tvt  
gives 
 ( ) ( ) 78.3621515 10 =+= aav  
 ( ) ( ) 35.5172020 10 =+= aav  
Writing the equations in matrix form, we have 

 







=
















35.517
78.362

201
151

1

0

a
a

 

Solving the above two equations gives 
 93.1000 −=a  
 914.301 =a  
Hence 
 ( ) taatv 10 +=  
 2015,914.3093.100       ≤≤+−= tt  
At 16=t , 
 ( ) 16914.3092.10016 ×+−=v  
          m/s7393.=  
 
Example 2 
The upward velocity of a rocket is given as a function of time in Table 2. 
                                         

     Table 2   Velocity as a function of time. 
t  (s) )(tv  (m/s) 
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
Determine the value of the velocity at 16=t  seconds using the direct method of interpolation 
and a second order polynomial. 
Solution 
For second order polynomial interpolation (also called quadratic interpolation), the velocity 
is given by 
 ( ) 2

210 tataatv ++=  
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        Figure 4   Quadratic interpolation. 

 
Since we want to find the velocity at 16=t , and we are using a second order polynomial, we 
need to choose the three data points that are closest to 16=t  that also bracket 16=t  to 
evaluate it.  The three points are 20 and ,15,10 210 === ttt . 
Then 
 ( ) 04.227,10 00 == tvt  
 ( ) 78.362 ,15 11 == tvt  
 ( ) 35.517,20 22 == tvt  
gives 
 ( ) ( ) ( ) 04.227101010 2

210 =++= aaav  

 ( ) ( ) ( ) 78.362151515 2
210 =++= aaav  

 ( ) ( ) ( ) 35.517202020 2
210 =++= aaav  

Writing the three equations in matrix form, we have 

 















=

































35.517
78.362
04.227

400201
225151
100101

2

1

0

a
a
a

 

Solving the above three equations gives 
 05.120 =a  
 733.171 =a  
 3766.02 =a  
Hence 
 ( ) 2010,3766.0733.1705.12 2 ≤≤++= ttttv  
At 16=t , 
 ( ) ( ) ( )2163766.016733.1705.1216 ++=v  
          m/s 19.392=  

( )00 , yx  

( )11, yx
( )22 , yx  

( )xf2  

y  

x  
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The absolute relative approximate error a∈  obtained between the results from the first and 
second order polynomial is 

 100
19.392

70.39319.392
×

−
=∈a  

        %38410.0=  
 
Example 3 
The upward velocity of a rocket is given as a function of time in Table 3. 
  

    Table 3   Velocity as a function of time. 
t  (s) )(tv  (m/s) 
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16=t  seconds using the direct method of 
interpolation and a third order polynomial.  
b) Find the absolute relative approximate error for the third order polynomial approximation. 
c) Using the third order polynomial interpolant for velocity from part (a), find the distance 
covered by the rocket from s11=t  to s16=t . 
d) Using the third order polynomial interpolant for velocity from part (a), find the 
acceleration of the rocket at s16=t . 
 
Solution 
a) For third order polynomial interpolation (also called cubic interpolation), we choose the 
velocity given by 
 ( ) 3

3
2

210 tatataatv +++=  
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        Figure 5   Cubic interpolation. 

 
Since we want to find the velocity at 16=t , and we are using a third order polynomial, we 
need to choose the four data points closest to 16=t  that also bracket 16=t  to evaluate it. 
The four points are 20 ,15  ,10 210 === ttt  and 5.223 =t . 
Then 
 ( ) 04.227   ,10 00 == tvt  
 ( ) 78.362    ,15 11 == tvt  
 ( ) 35.517   ,20 22 == tvt  
 ( ) 97.602,5.22 33 == tvt  
gives 
 ( ) ( ) ( ) ( ) 04.22710101010 3

3
2

210 =+++= aaaav  

 ( ) ( ) ( ) ( ) 78.36215151515 3
3

2
210 =+++= aaaav

 ( ) ( ) ( ) ( ) 35.51720202020 3
3

2
210 =+++= aaaav  

 ( ) ( ) ( ) ( ) 97.6025.225.225.225.22 3
3

2
210 =+++= aaaav  

Writing the four equations in matrix form, we have 

 



















=





































97.602
35.517
78.362
04.227

1139125.5065.221
8000400201
3375225151
1000100101

3

2

1

0

a
a
a
a

 

Solving the above four equations gives 
 2540.40 −=a  
 266.211 =a  
 13204.02 =a  

( )00, yx  

( )11, yx  

( )22, yx  
 

( )33, yx  

( )xf3

x  

y  
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 0054347.03 =a  
Hence 
 ( ) 3

3
2

210 tatataatv +++=  
        5.2210,0054347.013204.0266.212540.4 32 ≤≤+++−= tttt  
 ( ) ( ) ( ) ( )32 160054347.01613204.016266.212540.416 +++−=v  
          m/s06.392=  
b) The absolute percentage relative approximate error a∈  for the value obtained for )16(v  
between second and third order polynomial is 

 100
06.392

19.39206.392
×

−
=∈a  

                   %033269.0=  
c) The distance covered by the rocket between s11=t  and s16=t  can be calculated from the 
interpolating polynomial 
 ( ) 5.2210,0054347.013204.0266.212540.4 32 ≤≤+++−= tttttv  
Note that the polynomial is valid between 10=t  and 5.22=t  and hence includes the limits 
of integration of 11=t  and 16=t . 
So  

 ( ) ( ) ( )∫=−
16

11

1116 dttvss  

                     dtttt∫ +++−=
16

11

32 )0054347.013204.0266.212540.4(  

                               =
16

11

432

4
0054347.0

3
13204.0

2
266.212540.4 








+++−

tttt  

                     m 1605=  
d) The acceleration at 16=t  is given by 

 ( ) ( )
16

16
=

=
t

tv
dt
da  

Given that  
 ( ) 5.2210,0054347.013204.0266.212540.4 32 ≤≤+++−= tttttv  

 ( ) ( )tv
dt
dta =  

        ( )32 0054347.013204.0266.212540.4 ttt
dt
d

+++−=  

                   5.2210,016304.026408.0266.21 2 ≤≤++= ttt  
 ( ) ( ) ( )216016304.01626408.0266.2116 ++=a  
          2m/s665.29=  
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Chapter 05.03 
Newton’s Divided Difference Interpolation 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. derive Newton’s divided difference method of interpolation, 
2. apply Newton’s divided difference method of interpolation, and 
3. apply Newton’s divided difference method interpolants to find derivatives and 

integrals. 
 
What is interpolation? 

Many times, data is given only at discrete points such as  ,, 00 yx   11, yx , ......,  11,  nn yx , 

 nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a 

continuous function  xf  may be used to represent the 1n  data values with  xf  passing 
through the 1n  points (Figure 1).  Then one can find the value of y  at any other value of 
x .  This is called interpolation.   
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation.   
 So what kind of function  xf  should one choose?  A polynomial is a common 
choice for an interpolating function because polynomials are easy to  

(A) evaluate, 
(B) differentiate, and 
(C) integrate, 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes 
through the 1n  points.  One of the methods of interpolation is called Newton’s divided 
difference polynomial method.  Other methods include the direct method and the Lagrangian 
interpolation method.  We will discuss Newton’s divided difference polynomial method in 
this chapter. 
 
Newton’s Divided Difference Polynomial Method 

To illustrate this method, linear and quadratic interpolation is presented first.  Then, the 
general form of Newton’s divided difference polynomial method is presented.  To illustrate 
the general form, cubic interpolation is shown in Figure 1. 
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        Figure 1   Interpolation of discrete data. 
 
Linear Interpolation  
Given ),( 00 yx  and ),,( 11 yx  fit a linear interpolant through the data.  Noting )(xfy   and 

)( 11 xfy  , assume the linear interpolant )(1 xf  is given by (Figure 2)  

 )()( 0101 xxbbxf   

Since at 0xx  , 

 00010001 )()()( bxxbbxfxf   

and at 1xx  , 

 )()()( 0110111 xxbbxfxf   

                      )()( 0110 xxbxf   

giving 

 
01

01
1

)()(

xx

xfxf
b




  

So 
 )( 00 xfb   

 
01

01
1

)()(

xx

xfxf
b




  

giving the linear interpolant as 
 )()( 0101 xxbbxf    

 )(
)()(

)()( 0
01

01
01 xx

xx

xfxf
xfxf 




  

 

 00, yx

 11, yx

 22 , yx

 33, yx

 xf

x

y  
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         Figure 2   Linear interpolation. 
 
Example 1 

The upward velocity of a rocket is given as a function of time in Table 1 (Figure 3). 
 

Table 1  Velocity as a function of time. 
)s(  t )m/s(  )(tv

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 
 

Determine the value of the velocity at 16t  seconds using first order polynomial 
interpolation by Newton’s divided difference polynomial method.  
Solution 

For linear interpolation, the velocity is given by 
 )()( 010 ttbbtv   

Since we want to find the velocity at 16t , and we are using a first order polynomial, we 
need to choose the two data points that are closest to 16t  that also bracket 16t  to 
evaluate it.  The two points are 15t  and 20t . 
Then 
 ,150 t 78.362)( 0 tv  

 ,201 t 35.517)( 1 tv  
gives 
 )( 00 tvb   

 00, yx  

 11, yx

 xf1

x

y  
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      78.362  

 
01

01
1

)()(

tt

tvtv
b




  

      
1520

78.36235.517




  

      914.30  
 

Figure 3  Graph of velocity vs. time data for the rocket example. 
Hence 
 )()( 010 ttbbtv   

        ),15(914.3078.362  t  2015  t  
At ,16t  
 )1516(914.3078.362)16( v  
          m/s 69.393  
If we expand 
 ),15(914.3078.362)(  ttv  2015  t  
we get 
 ,914.3093.100)( ttv    2015  t  
and this is the same expression as obtained in the direct method. 
 
Quadratic Interpolation 
Given ),,( 00 yx  ),,( 11 yx  and ),,( 22 yx  fit a quadratic interpolant through the data.  Noting 

),(xfy   ),( 00 xfy   ),( 11 xfy   and ),( 22 xfy  assume the quadratic interpolant )(2 xf  

is given by 
 ))(()()( 1020102 xxxxbxxbbxf   
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At 0xx  , 

 ))(()()()( 100020010002 xxxxbxxbbxfxf   

                       0b  

           )( 00 xfb   

At 1xx   

 ))(()()()( 110120110112 xxxxbxxbbxfxf   

            )()()( 01101 xxbxfxf   

giving 

 
01

01
1

)()(

xx

xfxf
b




  

At 2xx   

 ))(()()()( 120220210222 xxxxbxxbbxfxf   

 ))(()(
)()(

)()( 1202202
01

01
02 xxxxbxx

xx

xfxf
xfxf 




  

Giving 

 
02

01

01

12

12

2

)()()()(

xx

xx

xfxf

xx

xfxf

b









  

Hence the quadratic interpolant is given by 
 ))(()()( 1020102 xxxxbxxbbxf   

                   ))((

)()()()(

)(
)()(

)( 10
02

01

01

12

12

0
01

01
0 xxxx

xx
xx

xfxf

xx

xfxf

xx
xx

xfxf
xf 













  

 

 
        Figure 4   Quadratic interpolation. 

 00 , yx  

 11, yx
 22 , yx

 xf2

y  

x
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Example 2 

The upward velocity of a rocket is given as a function of time in Table 2. 
 
                                          Table 2  Velocity as a function of time. 

)s(  t (m/s)  )(tv

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
Determine the value of the velocity at 16t  seconds using second order polynomial 
interpolation using Newton’s divided difference polynomial method. 
Solution 

For quadratic interpolation, the velocity is given by 
 ))(()()( 102010 ttttbttbbtv   

Since we want to find the velocity at ,16t  and we are using a second order polynomial, we 
need to choose the three data points that are closest to 16t  that also bracket 16t  to 
evaluate it.  The three points are ,100 t  ,151 t  and 202 t . 

Then 
 ,100 t 04.227)( 0 tv  

 ,151 t  78.362)( 1 tv  

 ,202 t 35.517)( 2 tv  
gives 
 )( 00 tvb   

     04.227  

 
01

01
1

)()(

tt

tvtv
b




  

     
1015

04.22778.362




  

     148.27  

 
02

01

01

12

12

2

)()()()(

tt

tt

tvtv

tt

tvtv

b









  

     
1020

1015

04.22778.362

1520

78.36235.517









  

     
10

148.27914.30 
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     37660.0  
Hence 
 ))(()()( 102010 ttttbttbbtv   

        ),15)(10(37660.0)10(148.2704.227  ttt  2010  t  
At ,16t  
 )1516)(1016(37660.0)1016(148.2704.227)16( v  
                   m/s 19.392  
If we expand 
 ),15)(10(37660.0)10(148.2704.227)(  ttttv  2010  t  
we get 
 237660.0733.1705.12)( tttv  , 2010  t  
This is the same expression obtained by the direct method. 
 
General Form of Newton’s Divided Difference Polynomial 

In the two previous cases, we found linear and quadratic interpolants for Newton’s divided 
difference method.  Let us revisit the quadratic polynomial interpolant formula 
 ))(()()( 1020102 xxxxbxxbbxf   

where 
 )( 00 xfb   

 
01

01
1

)()(

xx

xfxf
b




  

 
02

01

01

12

12

2

)()()()(

xx

xx

xfxf

xx

xfxf

b









  

Note that ,0b ,1b  and 2b  are finite divided differences. ,0b ,1b and 2b  are the first, second, 

and third finite divided differences, respectively.  We denote the first divided difference by 
 )(][ 00 xfxf   

the second divided difference by 

 
01

01
01

)()(
],[

xx

xfxf
xxf




  

and the third divided difference by 

 
02

0112
012

],[],[
],,[

xx

xxfxxf
xxxf




  

         
02

01

01

12

12 )()()()(

xx

xx

xfxf

xx

xfxf









  

where ],[ 0xf ],,[ 01 xxf  and ],,[ 012 xxxf  are called bracketed functions of their variables 

enclosed in square brackets. 
Rewriting, 
 ))(](,,[)](,[][)( 1001200102 xxxxxxxfxxxxfxfxf   
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This leads us to writing the general form of the Newton’s divided difference polynomial for 
1n  data points,        nnnn yxyxyxyx ,,,,......,,,, 111100  , as 

 ))...()((....)()( 110010  nnn xxxxxxbxxbbxf  

where 
 ][ 00 xfb   

 ],[ 011 xxfb   

 ],,[ 0122 xxxfb   

          
 ],....,,[ 0211 xxxfb nnn    

 ],....,,[ 01 xxxfb nnn   

where the definition of the thm  divided difference is 
 ],........,[ 0xxfb mm   

      
0

011 ],........,[],........,[

xx

xxfxxf

m

mm




   

From the above definition, it can be seen that the divided differences are calculated 
recursively.   
For an example of a third order polynomial, given ),,( 00 yx  ),,( 11 yx  ),,( 22 yx  and ),,( 33 yx  

))()(](,,,[

))(](,,[)](,[][)(

2100123

1001200103

xxxxxxxxxxf

xxxxxxxfxxxxfxfxf




 

 

          
           Figure 5   Table of divided differences for a cubic polynomial. 
 

Example 3 

The upward velocity of a rocket is given as a function of time in Table 3. 
 
 

 00 xfx

0b  

 11 xfx  

 22 xfx  

 33 xfx  

1b

2b

3b 01, xxf

 12 , xxf

 23 , xxf

 012 ,, xxxf

 123 ,, xxxf

 0123 ,,, xxxxf
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                                          Table 3  Velocity as a function of time. 

(s)  t (m/s)  )(tv

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds with third order polynomial 
interpolation using Newton’s divided difference polynomial method. 
b) Using the third order polynomial interpolant for velocity, find the distance covered by the 
rocket from s 11t  to s 16t . 
c) Using the third order polynomial interpolant for velocity, find the acceleration of the 
rocket at s 16t . 
Solution 

a) For a third order polynomial, the velocity is given by 
 ))()(())(()()( 2103102010 ttttttbttttbttbbtv   

Since we want to find the velocity at ,16t and we are using a third order polynomial, we 
need to choose the four data points that are closest to 16t  that also bracket 16t  to 
evaluate it.  The four data points are ,100 t  ,151 t  ,202 t  and 5.223 t . 

Then 
 ,100 t    04.227)( 0 tv  

 ,151 t     78.362)( 1 tv  

 ,202 t    35.517)( 2 tv  

 ,5.223 t 97.602)( 3 tv  

gives 
 ][ 00 tvb   

          )( 0tv  

     04.227  
],[ 011 ttvb    

          
01

01 )()(

tt

tvtv




  

     
1015

04.22778.362




  

                148.27  
],,[ 0122 tttvb   

     
02

0112 ],[],[

tt

ttvttv
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12

12
12

)()(
],[

tt

tvtv
ttv




  

   
1520

78.36235.517




  

   914.30  
148.27],[ 01 ttv  

02

0112
2

],[],[

tt

ttvttv
b




  

     
1020

148.27914.30




  

     37660.0  
],,,[ 01233 ttttvb   

     
03

012123 ],,[],,[

tt

tttvtttv




  

13

1223
123

],[],[
],,[

tt

ttvttv
tttv




  

23

23
23

)()(
],[

tt

tvtv
ttv




  

  
205.22

35.51797.602




  

  248.34  

12

12
12

)()(
],[

tt

tvtv
ttv




  

             
1520

78.36235.517




  

   914.30  

13

1223
123

],[],[
],,[

tt

ttvttv
tttv




  

       
155.22

914.30248.34




  

       44453.0  
37660.0],,[ 012 tttv  

      
03

012123
3

],,[],,[

tt

tttvtttv
b




  

          
105.22

37660.044453.0




  

          3104347.5   
Hence 
 ))()(())(()()( 2103102010 ttttttbttttbttbbtv   
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)20)(15)(10(105347.5

)15)(10(37660.0)10(148.2704.227
3 


 ttt

ttt
 

At ,16t  

 
)2016)(1516)(1016(105347.5

)1516)(1016(37660.0)1016(148.2704.227)16(
3 




v
 

          m/s 06.392  
b) The distance covered by the rocket between s 11t  and s 16t  can be calculated from 
the interpolating polynomial 

 
)20)(15)(10(105347.5

)15)(10(37660.0)10(148.2704.227)(
3 


 ttt

ttttv
  

                  ,0054347.013204.0265.212541.4 32 ttt   5.2210  t  
Note that the polynomial is valid between 10t  and 22.5t  and hence includes the limits 
of 11t  and 16t . 
So 

      
16

11

1116 dttvss  

          dtttt )0054347.013204.0265.212541.4( 32
16

11

   

                    
16

11

432

4
0054347.0

3
13204.0

2
265.212541.4 










ttt
t  

           m 1605  
c) The acceleration at 16t  is given by 

  16)()16(  ttv
dt

d
a  

     )()( tv
dt

d
ta   

                    32 0054347.013204.0265.212541.4 ttt
dt

d
  

                   2016304.026408.0265.21 tt   
  2)16(016304.0)16(26408.0265.21)16( a  

                      2m/s 664.29  
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Chapter 05.04 
Lagrangian Interpolation 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. derive Lagrangian method of interpolation, 
2. solve problems using Lagrangian method of interpolation, and 
3. use Lagrangian interpolants to find derivatives and integrals of discrete functions. 

 
What is interpolation? 

Many times, data is given only at discrete points such as  ,, 00 yx   11, yx , ......,  11,  nn yx , 

 nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a 

continuous function  xf  may be used to represent the 1n  data values with  xf  passing 
through the 1n  points (Figure 1).  Then one can find the value of y  at any other value of 
x .  This is called interpolation.   
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation.   
 So what kind of function  xf  should one choose?  A polynomial is a common 
choice for an interpolating function because polynomials are easy to  

(A) evaluate, 
(B) differentiate, and 
(C) integrate, 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes 
through the 1n  data points.  One of the methods used to find this polynomial is called the 
Lagrangian method of interpolation.  Other methods include Newton’s divided difference 
polynomial method and the direct method.  We discuss the Lagrangian method in this 
chapter. 
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        Figure 1   Interpolation of discrete data. 
 
 
The Lagrangian interpolating polynomial is given by 

 



n

i
iin xfxLxf

0

)()()(  

where n  in )(xfn  stands for the thn  order polynomial that approximates the function 

)(xfy   given at 1n  data points as        nnnn yxyxyxyx ,,,,......,,,, 111100  , and 

 

 




n

ij
j ji

j
i xx

xx
xL

0

)(  

)(xLi  is a weighting function that includes a product of 1n  terms with terms of ij   

omitted.  The application of Lagrangian interpolation will be clarified using an example. 
 
Example 1 

The upward velocity of a rocket is given as a function of time in Table 1. 
                  

Table 1  Velocity as a function of time. 
t  (s) )(tv  (m/s)

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 

 00, yx

 11, yx

 22 , yx

 33, yx

 xf

x

y  
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Determine the value of the velocity at 16t  seconds using a first order Lagrange 
polynomial.  
 

Solution 

For first order polynomial interpolation (also called linear interpolation), the velocity is given 
by 

 



1

0

)()()(
i

ii tvtLtv  

               )()()()( 1100 tvtLtvtL   

 

 
Figure 2   Graph of velocity vs. time data for the rocket example. 
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         Figure 3   Linear interpolation. 
 
Since we want to find the velocity at 16t , and we are using a first order polynomial, we 
need to choose the two data points that are closest to 16t  that also bracket 16t  to 
evaluate it.  The two points are 150 t  and 201 t . 

Then 
   78.362  ,15 00  tvt  

   35.517  ,20 11  tvt  
gives 
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                   )35.517(2.0)78.362(8.0   
                   m/s 69.393  
You can see that 8.0)(0 tL  and 2.0)(1 tL  are like weightages given to the velocities at 

15t  and 20t  to calculate the velocity at 16t . 
 
Quadratic Interpolation 
 

 
        Figure 4   Quadratic interpolation. 

 

Example 2 

The upward velocity of a rocket is given as a function of time in Table 2. 
                                      

 Table 2   Velocity as a function of time. 
t  (s) )(tv  (m/s)

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds with second order polynomial 
interpolation using Lagrangian polynomial interpolation.   
b) Find the absolute relative approximate error for the second order polynomial 
approximation. 

 00 , yx  

 11, yx
 22 , yx

 xf2

y  

x
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Solution 

a) For second order polynomial interpolation (also called quadratic interpolation), the 
velocity is given by 

 



2

0

)()()(
i

ii tvtLtv  

        )()()()()()( 221100 tvtLtvtLtvtL   

Since we want to find the velocity at 16t , and we are using a second order polynomial, we 
need to choose the three data points that are closest to 16t  that also bracket 16t  to 
evaluate it.  The three points are 20  and  ,15  ,10 210  ttt . 

Then 
   04.227,10 00  tvt  

   78.362,15 11  tvt  

   35.517,20 22  tvt  
gives 
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b) The absolute relative approximate error a  for the second order polynomial is calculated 

by considering the result of the first order polynomial (Example 1) as the previous 
approximation. 

 100
19.392

69.39319.392



a  

        %38410.0  
 
Example 3 

The upward velocity of a rocket is given as a function of time in Table 3. 
 
                                           Table 3   Velocity as a function of time 

t  (s) )(tv  (m/s)

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds using third order Lagrangian 
polynomial interpolation.  
b) Find the absolute relative approximate error for the third order polynomial approximation. 
c) Using the third order polynomial interpolant for velocity, find the distance covered by the 
rocket from s 11t  to s 16t . 
d) Using the third order polynomial interpolant for velocity, find the acceleration of the 
rocket at s 16t . 
 

Solution 

a) For third order polynomial interpolation (also called cubic interpolation), the velocity is 
given by 
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        Figure 5   Cubic interpolation. 
 
Since we want to find the velocity at 16t , and we are using a third order polynomial, we 
need to choose the four data points closest to 16t  that also bracket 16t  to evaluate it. 
The four points are 20  ,15  ,10 210  ttt  and 5.223 t . 

Then 
   04.227,10 00  tvt  
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b) The absolute percentage relative approximate error, a  for the value obtained for )16(v  

can be obtained by comparing the result with that obtained using the second order 
polynomial (Example 2) 

 100
06.392

19.39206.392



a  

       %033269.0  
c) The distance covered by the rocket between s 11t  to s 16t  can be calculated from the 
interpolating polynomial as 
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Note that the polynomial is valid between 10t  and 5.22t  and hence includes the limits 
of 11t  and 16t . 
So 
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d) The acceleration at 16t  is given by 
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Given that  
 32 00544.013195.0265.21245.4)( ttttv  , 5.2210  t  
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dt
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                   32 00544.013195.0265.21245.4 ttt
dt

d
  

        201632.026390.0265.21 tt  , 5.2210  t  
 2)16(01632.0)16(26390.0265.21)16( a  

          2m/s 665.29  
Note: There is no need to get the simplified third order polynomial expression to conduct the 
differentiation.  An expression of the form 
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Chapter 05.05 
Spline Method of Interpolation 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. interpolate data using spline interpolation, and 
2. understand why spline interpolation is important. 

 
What is interpolation? 

Many times, data is given only at discrete points such as  ,, 00 yx   11, yx , ......,  11,  nn yx , 

 nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a 

continuous function  xf  may be used to represent the 1n  data values with  xf  passing 
through the 1n  points (Figure 1).  Then one can find the value of y  at any other value of 
x .  This is called interpolation.   
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation.   
 So what kind of function  xf  should one choose?  A polynomial is a common 
choice for an interpolating function because polynomials are easy to  

(A) evaluate, 
(B) differentiate, and 
(C) integrate 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes 
through the 1n  points.  Several methods to obtain such a polynomial include the direct 
method, Newton’s divided difference polynomial method and the Lagrangian interpolation 
method.   
 So is the spline method yet another method of obtaining this thn  order polynomial. 
…… NO!  Actually, when n  becomes large, in many cases, one may get oscillatory behavior 
in the resulting polynomial.  This was shown by Runge when he interpolated data based on a 
simple function of 

 
2251

1

x
y


  

on an interval of [–1, 1].  For example, take six equidistantly spaced points in [–1, 1] and find 
y  at these points as given in Table 1. 
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        Figure 1   Interpolation of discrete data. 
  

Table 1  Six equidistantly spaced points in [–1, 1]. 
 
 
 
 
 
 
 
 
 
 
 
 Now through these six points, one can pass a fifth order polynomial 

,106731.5100004.17308.1103651.32019.1101378.3)( 11123114511
5

  xxxxxxf

 11  x  
through the six data points.  On plotting the fifth order polynomial (Figure 2) and the original 
function, one can see that the two do not match well.  One may consider choosing more 
points in the interval [–1, 1] to get a better match, but it diverges even more (see Figure 3), 
where 20 equidistant points were chosen in the interval [–1, 1] to draw a 19th order 
polynomial.  In fact, Runge found that as the order of the polynomial becomes infinite, the 
polynomial diverges in the interval of 726.01  x  and 1726.0  x . 
 So what is the answer to using information from more data points, but at the same 
time keeping the function true to the data behavior?  The answer is in spline interpolation.  
The most common spline interpolations used are linear, quadratic, and cubic splines. 
 
 

x  
2251
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x
y
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Figure 2   5th order polynomial interpolation with six equidistant points. 
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Figure 3   Higher order polynomial interpolation is a bad idea. 
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Linear Spline Interpolation  
Given       nnnn yxyxyxyx ,,,......,,,, 111100  , fit linear splines (Figure 4) to the data.  This 

simply involves forming the consecutive data through straight lines.  So if the above data is 
given in an ascending order, the linear splines are given by )( ii xfy  . 

 
Figure 4   Linear splines. 
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in the above function are simply slopes between 1ix  and ix . 
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Example 1 

The upward velocity of a rocket is given as a function of time in Table 2 (Figure 5). 
 

Table 2  Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 
 

Determine the value of the velocity at 16t  seconds using linear splines.  
 

Solution 

Since we want to evaluate the velocity at 16t , and we are using linear splines, we need to 
choose the two data points closest to 16t  that also bracket 16t  to evaluate it.  The two 
points are 150 t  and 201 t . 

Then 
 ,150 t  78.362)( 0 tv  

 ,201 t  35.517)( 1 tv  
gives 

 
Figure 5   Graph of velocity vs. time data for the rocket example. 
 



05.04.6                                                        Chapter 05.04 
 

 )(
)()(

)()( 0
01

01
0 tt

tt

tvtv
tvtv 




  

        )15(
1520

78.36235.517
78.362 




 t  
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 )1516(913.3078.362)16( v  
          m/s7.393  
Linear spline interpolation is no different from linear polynomial interpolation. Linear splines 
still use data only from the two consecutive data points. Also at the interior points of the data, 
the slope changes abruptly. This means that the first derivative is not continuous at these 
points. So how do we improve on this? We can do so by using quadratic splines. 
 
Quadratic Splines 

In these splines, a quadratic polynomial approximates the data between two consecutive data 
points.  Given        nnnn yxyxyxyx ,,,,......,,,, 111100  , fit quadratic splines through the data.  

The splines are given by 
 ,)( 11

2
1 cxbxaxf   10 xxx   

          ,22
2

2 cxbxa   21 xxx   
  . 
  . 
  . 
          ,2

nnn cxbxa   nn xxx 1  

So how does one find the coefficients of these quadratic splines?  There are n3  such 
coefficients 
 niai ,.....,2,1  ,   

 nibi ,.....,2,1  ,   

 nici ,.....,2,1  ,   

To find n3  unknowns, one needs to set up n3  equations and then simultaneously solve them.  
These n3  equations are found as follows. 
1. Each quadratic spline goes through two consecutive data points 

 )( 0101
2

01 xfcxbxa   

 )( 1111
2

11 xfcxbxa   
      . 
      . 
      . 

 )( 11
2

1   iiiiii xfcxbxa  

 )(2
iiiiii xfcxbxa   

        . 
        . 
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        . 

 )( 11
2

1   nnnnnn xfcxbxa  

 )(2
nnnnnn xfcxbxa   

This condition gives n2  equations as there are n  quadratic splines going through two 
consecutive data points. 
2. The first derivatives of two quadratic splines are continuous at the interior points.  For 
example, the derivative of the first spline 
 11

2
1 cxbxa   

is 
 112 bxa   
The derivative of the second spline 
 22

2
2 cxbxa   

is 
 222 bxa   

and the two are equal at 1xx   giving 

 212111 22 bxabxa   

 022 212111  bxabxa  
Similarly at the other interior points, 
 022 323222  bxabxa  

  . 
  . 
  . 
 022 11   iiiiii bxabxa  

  . 
  . 
  . 
 022 1111   nnnnnn bxabxa  

Since there are )1( n  interior points, we have )1( n  such equations.  So far, the total 
number of equations is )13()1()2(  nnn  equations.  We still then need one more 
equation. 
We can assume that the first spline is linear, that is 
 01 a   
This gives us n3  equations and n3  unknowns.  These can be solved by a number of 
techniques used to solve simultaneous linear equations. 
 

Example 2 

The upward velocity of a rocket is given as a function of time as 
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Table 3   Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds using quadratic splines. 
b) Using the quadratic splines as velocity functions, find the distance covered by the 

rocket from s11t  to s16t . 
c) Using the quadratic splines as velocity functions, find the acceleration of the rocket at 

s16t . 
 

Solution 

a) Since there are six data points, five quadratic splines pass through them. 
,)( 11

2
1 ctbtatv   100  t  

        ,22
2

2 ctbta   1510  t  

        ,33
2

3 ctbta   2015  t  

        ,44
2

4 ctbta   5.2220  t  

        ,55
2

5 ctbta   305.22  t  

The equations are found as follows. 
1. Each quadratic spline passes through two consecutive data points.  

11
2

1 ctbta   passes through 0t  and 10t . 

 0)0()0( 11
2

1  cba                                                                         (1) 

 04.227)10()10( 11
2

1  cba                                                                        (2) 
 

22
2

2 ctbta   passes through 10t  and 15t . 

 04.227)10()10( 22
2

2  cba                                                                         (3) 

 78.362)15()15( 22
2

2  cba                                                                         (4) 
 

33
2

3 ctbta   passes through 15t  and 20t . 

 78.362)15()15( 33
2

3  cba                                                                                       (5) 

 35.517)20()20( 33
2

3  cba                                                                           (6) 

 

44
2

4 ctbta   passes through 20t  and 5.22t . 

 35.517)20()20( 44
2

4  cba                                                                           (7) 

 97.602)5.22()5.22( 44
2

4  cba                                                                           (8) 
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55
2

5 ctbta   passes through 5.22t  and 30t . 

 97.602)5.22()5.22( 55
2

5  cba                                                                           (9) 

 67.901)30()30( 55
2

5  cba                                                                         (10) 

2. Quadratic splines have continuous derivatives at the interior data points. 
At 10t  
 0)10(2)10(2 2211  baba                                                                                  (11) 
At 15t  
 0)15(2)15(2 3322  baba                                                                         (12) 

At 20t  
 0)20(2)20(2 4433  baba                                                                         (13) 

At 5.22t  
 0)5.22(2)5.22(2 5544  baba                                                                         (14) 

3.  Assuming the first spline 11
2

1 ctbta   is linear, 

 01 a                                                                             (15) 
Combining Equation (1) –(15) in matrix form gives 
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Solving the above 15 equations give the 15 unknowns as 

i  ia  ib  ic  

1 0 22.704 0 
2 0.8888 4.928 88.88 
3 –0.1356 35.66 –141.61
4 1.6048 –33.956 554.55 
5 0.20889 28.86 –152.13

 
Therefore, the splines are given by 
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 ,704.22)( ttv      100  t  

        ,88.88928.48888.0 2  tt   1510  t  

        ,61.14166.351356.0 2  tt   2015  t  

        ,55.554956.336048.1 2  tt   5.2220  t  

        ,13.15286.2820889.0 2  tt   305.22  t  
At s16t  

 61.141)16(66.35)16(1356.0)16( 2 v  
          m/s24.394  
 
b) The distance covered by the rocket between 11 and 16 seconds can be calculated as 

     
16

11

)()11()16( dttvss  

But since the splines are valid over different ranges, we need to break the integral 
accordingly as 
 ,88.88928.48888.0)( 2  tttv   1510  t  

        ,61.14166.351356.0 2  tt  2015  t  

   
16

11

15

11

16

15

)()()( dttvdttvdttv  

      
15

11

16

15

22 )61.14166.351356.0()88.88928.48888.0()11()16( dtttdtttss  

                              
16

15

23

15

11

23

61.141
2

66.35
3

1356.0

88.88
2

928.4
3

8888.0





















t
tt

t
tt

 

          53.37835.1217   
                              9.1595  m 
 
c) What is the acceleration at 16t ? 

 
16

)()16(



t

tv
dt

d
a  

    )61.14166.351356.0()()( 2  tt
dt

d
tv

dt

d
ta  

   66.352712.0        t ,  2015  t  
 66.35)16(2712.0)16( a  

                    2m/s321.31  
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Chapter 05.06 
Extrapolation is a Bad Idea 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. understand why using extrapolation can be a bad idea. 
 
Example 
(Due to certain reasons, this student wishes to remain anonymous.) 
This takes place in Summer Session B – July 2001 
 
Student: “Hey, Dr. Kaw!  Look at this cool new cell phone I just got!” 
Kaw: “That’s nice.  It better not ring in my class or it’s mine.” 
Student: “What would you think about getting stock in this company?” 
Kaw: “What company is that?” 
Student: “WorldCom!  They’re the world’s leading global data and internet company.” 
Kaw: “So?” 
Student: “They’ve just closed the deal today to merge with Intermedia Communications, 
based right here in Tampa!” 
Kaw: “Yeah, and …?” 
Student: “The stock’s booming!  It’s at $14.11 per share and promised to go only one way—
up!  We’ll be millionaires if we invest now!” 
Kaw: “You might not want to assume their stock will keep rising … besides, I’m skeptical of 
their success.  I don’t want you putting yourself in financial ‘jeopardy!’ over some silly 
extrapolation.  Take a look at these NASDAQ composite numbers (Table 1)” 
Student: “That’s only up to two years ago …”  
Kaw: “That’s right.  Looking at this data, don’t you think you should’ve invested back 
then?” 
Student: “Well, didn’t the composite drop after that?” 
Kaw: “Right again, but look what you would’ve hoped for if you had depended on that trend 
continuing (Figure 1).” 
Student: “So you’re saying that …?” 
Kaw: “You should seldom depend on extrapolation as a source of approximation!  Just take 
a look at how wrong you would have been (Table 2).” 
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 Table 1. End of year NASDAQ composite data 

End of year1 NASDAQ
1 751.96 
2 1052.13 
3 1291.03 
4 1570.35 
5 2192.69 
6 4069.31 
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Figure 1  Data from 1994 to 1999 extrapolated to yield results for 2000 and 2001 using 
polynomial extrapolation. 

 
 
 
 
 

                                                 
 
 
 
 
 
1 Range of years actually between 1994 (Year 1) and 1999 (Year 9). Numbers start from 1 to 
avoid round-off errors and near singularity in matrix calculations. 
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Table 2 Absolute relative true error of polynomial interpolation. 

End of Year Actual 
Fifth order  
polynomial interpolation

Absolute relative  
true error 

2000 2471 9128 269.47 % 
2001 1950 20720 962.36 % 

 
Student: “Now wait a sec!  I wouldn’t have been quite that wrong.  What if I had used cubic 
splines instead of a fifth order interpolant?” 
Kaw: “Let’s find out.” 
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Figure 2  Data from 1994 to 1999 extrapolated to yield results for 2000 and 2001 using cubic 
spline interpolation. 
 
Table 3  Absolute relative true error of cubic spline interpolation 

End of Year Actual
Cubic spline  
interpolation 

Absolute relative  
true error 

2000 2471 5945.9 140.63 % 
2001 1950 5947.4 204.99 % 

 
Student: “There you go.  That didn’t take so long (Figure 2 and Table 3).” 
Kaw: “Well, let’s think about what this data means.  If you had gone ahead and invested, 
thinking your projected yield would follow the spline, you would have only been 205%  
(Table 3) wrong, as opposed to being 962% (Table 2) wrong by following the polynomial.  
That’s not so bad, is it?” 
Student: “Okay, you’ve got a point.  Maybe I’ll hold off on being an investor and just use 
the cell phone.” 
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Kaw: “You’ve got a point, too—you’re brighter than you look … that is if you turn off the 
phone before coming to class.” 
 
* * * * * 
 
<One year later … July 2002> 
Student: “Hey, Dr. Kaw!  Whatcha got for me today?” 
Kaw: “The Computational Methods students just took their interpolation test today, so here 
you go.  <hands stack of tests to student> Time to grade them!” 
Student: <Grunt!> “That’s a lot of paper!  Boy, interpolation … learned that a while ago.” 
Kaw: “You haven’t forgotten my lesson to you about not extrapolating, have you?” 
Student: “Of course not!  Haven’t you seen the news?  WorldCom just closed down 93% 
from 83¢ on June 25 to 6¢ per share!  They’ve had to recalculate their earnings, so your 
skepticism really must’ve spread.  Did you have an “in” on what was going on?” 
Kaw: “Oh, of course not.  I’m just an ignorant numerical methods professor.” 
 

INTERPOLATION  
Topic Extrapolation is a bad idea 
Summary Textbook notes on errors that can occur when extrapolating data 
Major All majors of engineering 
Authors Autar Kaw 
Last Revised December 23, 2009 
Web Site http://numericalmethods.eng.usf.edu 

 
 



05.07.1 

 
 
 
 
 

Chapter 05.07 
Higher Order Interpolation is a Bad Idea 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. Understand why higher order interpolation is a bad idea 
 
Example 

Peter: “Dr. Kaw, what is this you were talking about in class that higher order interpolation 
is a bad idea?  More points, more accuracy; isn’t that the way it works?”  
Kaw: “Come on in.  In 1901, Runge wanted to show that higher order interpolation is a bad 
idea.  He took this function, )251/(1)( 2xxf   in the domain [-1,1].” 
 
Table 1. Six equidistant points of )251/(1)( 2xxf   

x  y  

-1 0.038462
-0.6 0.1 
-0.2 0.5 
0.2 0.5 
0.6 0.1 
1 0.038462

 
Let us choose 6 points equidistantly between –1 and 1 as given in Table 1.  You can 
interpolate these 6 data points by a 5th order polynomial.  In Figure 1, I am then plotting the 
fifth order polynomial and the original function.  See the oscillations in the interpolating 
polynomial.  The polynomial does go through the six points, but at many other points it does 
not even come close to the original function.  Just look at 85.0x , the value of the function 
is 0.052459, but the fifth order polynomial gives you a value of –0.055762.  That is a 
whopping 206.30 % relative error and also note the opposite sign. 
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                          Figure 1  5th order polynomial interpolation with six equidistant points. 

 
Peter: “Maybe you are not taking enough points.  Six points may be too small a number to 
approximate the function.” 
Kaw: “How many points do you want to choose?” 
Peter: “Ok! Let’s get crazy.  How about 20?  That will give us a 19th order polynomial” 
Kaw: “I chose 20 points equidistantly in [-1,1].  It is not any better; the oscillations continue 
and get worse near the end points (Figure 2).” 
Peter: “Yes, it is wild.  It, however, did do a better job of approximating the data except near 
the ends, but at the ends it is worse than before.  At our chosen point, 85.0x , the value of 
the function is 0.052459, while we get –0.62944 from the 19th order polynomial, and that is a 
big whopper error of 1299.9 %.  Higher order interpolation is a bad idea.  What is the 
solution to the problem then?  What if we choose more points close to the end points?” 
Kaw: “You are on to something.  But, I need to go to teach my other class.  You can get your 
question answered by seeing other anecdotes on the numerical methods web site.  Just choose 
any interpolation module.  You will get the answers to the questions you just asked.” 
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           Figure 2  19th order polynomial interpolation with twenty equidistant points 
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Chapter 05.08 
Why Do we Need Splines? 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. understand why we use splines for interpolation. 
 
Example 

Peter: “Dr. Kaw, in class, you were talking about higher order interpolation being a bad idea 
and then telling us that taking more points is not going to get you a better approximation.”  
Kaw: “Yes, we were talking in class about the classic example taken by Runge.  He took 

)251/(1)( 2xxf   in the domain [-1,1].  Choosing 20 equidistant points (Figure 1) on [-1,1] 
to approximate the function by a 19th order polynomial gave worse results than when we 
chose 6 equidistant points to approximate the function by a 5th order polynomial.” 
Peter: “Yes, it was wild.  So what do we do?  Accept this fact and roll over?” 
Kaw: “Now, we do not have to do that.  We can use interpolation such as cubic splines.  
Cubic splines approximate data between consecutive data points by cubic polynomials but at 
the same time use all the data to approximate the function.  You can see from Figure 2 how 
cubic splines do a better job of approximating the data.  The thin dash line is a th19  order 
polynomial approximation of the function by choosing 20 equidistant data points in [-1, 1], 
while the thick dash line is the cubic spline approximation of the data.  See how close the 
cubic splines are to the original function (continuous line).” 
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Figure 1  5th and 19th order polynomial approximations of Runge’s function. 
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Figure 2   Approximating Runge’s function by a 19th order polynomial and a cubic spline. 
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Chapter 05.09 
Choice of Points 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. see how your choice of points affects interpolation. 
 
Example 

Peter: “Dr. Kaw, in the last class you showed us that higher order interpolation is a bad idea.  
But when you took equidistant points between [-1,1] to approximate the function 

)251/(1)( 2xxf  , it seemed that as you increased the number of points for approximation, 
the approximation was getting closer for the range of [-0.5,0.5]. 
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      Figure 1  12th order polynomial interpolation with equidistantly spaced points 
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Kaw: “But it did give highly oscillatory results outside that range.  In Figure 1, you are 
approximating the function by a th12  order polynomial (dash curve), and it matches the 
original function (continuous curve) very well between [-0.5, 0.5]. 
Peter:  “What if we choose more points close to the end points?” 
Kaw: “You are on to something.  Yes, it would make a difference and Runge found that if 
you choose more points close to the ends, you do get a better approximation.  Let us choose 
points not equidistantly but closer to the ends.  You can see in Figure 2, how much closer the 
12th order polynomial (dash curve) is to the original function (continuous curve).  This is not 
to say that this choice of points will work for every case.  The choice of points is dependent 
on the value of the possible derivatives of a function, but this concept is beyond the scope of 
the course.”  
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                    Figure 2  12th order polynomial interpolation with more point at the end 
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Chapter 05.10 
Shortest Path of a Robot 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. find the shortest smooth path through consecutive points, and 
2. compare the lengths of different paths. 

 
Example 

Peter: “Dr. Kaw, I am taking a course in manufacturing.  We are solving the following 
problem.  A robot arm with a rapid laser is used to do a quick quality check, such as the 
radius of hole, on six holes on a rectangular plate "10"15   at several points as shown in Table 
1 and Figure 1.  
 
Table 1  The coordinate values of six holes on a rectangle plate. 
 
 
 
 
 
 
 
 
 
I am using Excel to fit a fifth order polynomial through the 6 points.  But, when I plot the 
polynomial, it is taking a long path! (Figure 2)” 
Kaw: “Why do you not just join the consecutive points by a straight line; just like the kids do 
at Pizza Hut™ with those ‘Connect the dots’ activities?” 
Peter: “You are making me hungry and I wish it were that easy.  The path of the robot going 
from one point to another point needs to be smooth so as to avoid sharp jerks in the arm that 
can otherwise create premature wear and tear of the robot arm.” 
Kaw: “As I recall, you took my course in Numerical Methods.  What was that …… one year 
ago?” 
Peter: “Yes, your memory is sharp, but my retention from that course – can we not talk 
about that?!?” 

x  y
2.00 7.2
4.5 7.1
5.25 6.0
7.81 5.0
9.20 3.5
10.60 5.0
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Kaw: “Come into my office.  I wrote this program using Maple. See this function, 

)251/(1)( 2xxf  .  I am choosing 7 points equidistantly (Table 2) between –1 and 1. 
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                  Figure 1  Locations of holes on the rectangular plate. 
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Figure 2  Approximating the path of the robot using 5th order polynomial. 
 

Now look at the sixth order interpolating polynomial and the original function (Figure 
3).  See the oscillations in the interpolating polynomial.  In 1901, Runge used this example 
function to show that higher order interpolation is a bad idea.  One of the solutions to your 



Shortest Path of Robot                                                                                                  05.10.3 
 
 
robot path problem is to use quadratic or cubic spline interpolation.  That will give you a 
smooth curve with fewer oscillations, and a smoother and shorter path.” 
 
Table 2  The coordinate values of 7 equidistantly spaced points. 
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                     Figure 3   Runge’s function interpolated. 
 
Peter: “Okay.  Let’s give that a try.” 
Kaw: “Now, let’s try generating a set of cubic splines to go through the data:” 
 

x  
2251

1

x
y


  

-1 0.038462 
-0.66667 0.0826 
-0.33333 0.264706 
0 1 
0.333333 0.264706 
0.666667 0.082569 
1 0.0385 



05.10.4                                                        Chapter 05.10 
 
 

0

2

4

6

8

10

0 2 4 6 8 10 12

x

y

 
       Figure 4   Path of the robot arm using cubic spline interpolation. 

 
Peter: “Wow!  That (Figure 4) looks much better!” 
Kaw: “It may look better, but let’s find out for sure.  See if you can combine the two plots 
(Figure 5) and compare the lengths of each path.” 
Peter: “The length of a path S  if )(xfy   from a  to b  is given by  

 dx
dx

df
S

b

a
 








2

1   

Right?” 
 
Table 3   Comparison of the length of curves. 

Type of interpolation 5th order polynomial Cubic Spline 
Length of Curve 14.919” 11.248” 

 
Kaw: “Yes!  You solved the problem.  See Table 3 for answers.” 
Peter: “I guess your class was good for something after all, Dr. Kaw.” 
Kaw: “Are you sure?  You could have always fallen back on the connecting-the-dots 
method.  Besides, you don’t want to grow up … you’re a Pizza Hut™ kid, right?” 
Peter: “That’s a Toys Я’ Us™ kid.  You’ll do anything to be reminded of songs, won’t 
you?” 
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Figure 5 Path of robot arm compared using polynomial interpolation and cubic spline 
interpolation. 
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Chapter 06.01 
Statistics Background of Regression Analysis 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. review the statistics background needed for learning regression, and 
2. know a brief history of regression. 

 
Review of Statistical Terminologies 
 Although the language of statistics may be used at an elementary and descriptive 
level in this chapter, it makes an integral part of our every day discussions.  When two 
friends talk about the weather (whether it will rain or not - probability), or the time it takes to 
drive from point A to point B (speed - mean or average), or baseball facts (all time career 
RBI or home runs of a sportsman -sorting, range), or about class grades (lowest and highest 
score - range and sorting), they are invariably using statistical tools.  From the foregoing, it is 
imperative then that we review some of the statistical terminologies that we may encounter in 
studying the topic of regression.  Some key terms we need to review are sample, arithmetic 
mean (average), error or deviation, standard deviation, variance, coefficient of variation, 
probability, Gaussian or normal distribution, degrees of freedom, and hypothesis. 
 
Elementary Statistics 
 A statistical sample is a fraction or a portion of the whole (population) that is studied.  
This is a concept that may be confusing to many and is best illustrated with examples.  
Consider that a chemical engineer is interested in understanding the relationship between the 
rate of a reaction and temperature.  It is impractical for the engineer to test all possible and 
measurable temperatures.  Apart from the fact that the instrument for temperature 
measurement have limited temperature ranges for which they can function, the sheer number 
of hours required to measure every possible temperature makes it impractical.  What the 
engineer does is choose a temperature range (based on his/her knowledge of the chemistry of 
the system) in which to study.  Within the chosen temperature range, the engineer further 
chooses specific temperatures that span the range within which to conduct the experiments.  
These chosen temperatures for study constitute the sample while all possible temperatures are 
the population.  In statistics, the sample is the fraction of the population chosen for study. 

The location of the center of a distribution - the mean or average - is an item of 
interest in our every day lives.  We use the concept when we talk about the average income, 
the class average for a test, the average height of some persons or about one being 
overweight (based on the average weight expected of an individual with similar 
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characteristics) or not.  The arithmetic mean of a sample is a measure of its central tendency 
and is evaluated by dividing the sum of individual data points by the number of points.  
 Consider Table 1 which 14 measurements of the concentration of sodium chlorate 
produced in a chemical reactor operated at a pH of 7.0. 
 
Table 1  Chlorate ion concentration in 3mmol/cm  

12.0 15.0 14.1 15.9 11.5 14.8 11.2 13.7 15.9 12.6 14.3 12.6 12.1 14.8 
   
The arithmetic mean y  is mathematically defined as 

 
n

y
y

n

i
i∑

== 1                                          (1) 

which is the sum of the individual data points iy  divided by the number of data points n .  
 One of the measures of the spread of the data is the range of the data.  The range R  is 
defined as the difference between the maximum and minimum value of the data as 
 minmax yyR −=                     (2) 
where 
 maxy is the maximum of the values of iy , ,,...,2,1 ni =  
 miny is the minimum of the values of iy , .,...,2,1 ni = . 
  
 However, range may not give a good idea of the spread of the data as some data 
points may be far away from most other data points (such data points are called outliers).  
That is why the deviation from the average or arithmetic mean is looked as a better way to 
measure the spread.  The residual between the data point and the mean is defined as 
 yye ii −=                      (3) 
The difference of each data point from the mean can be negative or positive depending on 
which side of the mean the data point lies (recall the mean is centrally located) and hence if 
one calculates the sum of such differences to find the overall spread, the differences may 
simply cancel each other.  That is why the sum of the square of the differences is considered 
a better measure.  The sum of the squares of the differences, also called summed squared 
error (SSE), tS , is given by 

 ( )∑
=

−=
n

i
it yyS

1

2                      (4) 

Since the magnitude of the summed squared error is dependent on the number of data points, 
an average value of the summed squared error is defined as the variance, 2σ   
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The variance, 2σ  is sometimes written in two different convenient formulas as 
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 However, why is the variance divided by )1( −n  and not n  as we have n  data points?  
This is because with the use of the mean in calculating the variance, we lose the 
independence of one of the data points.  That is, if you know the mean of n  data points, then 
the value of one of the n  data points can be calculated by knowing the other )1( −n  data 
points.  
 To bring the variation back to the same level of units as the original data, a new term 
called standard deviation, σ , is defined as 
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 Furthermore, the ratio of the standard deviation to the mean, known as the coefficient 
variation vc.  is also used to normalize the spread of a sample.  

 
100. ×=

y
vc σ

          (9) 
Example 1 
Use the data in Table 1 to calculate the 

a) mean chlorate concentration, 
b) range of data, 
c) residual of each data point, 
d) sum of the square of the residuals. 
e) sample standard deviation, 
f) variance, and  
g) coefficient of variation. 

 
Solution 
Set up a table (see Table 2) containing the data, the residual for each data point and the 
square of the residuals. 
 
Table 2 Data and data summations for statistical calculations. 

i  iy  2
iy  yyi −  ( )2yyi −  

1 12 144 -1.6071 2.5829 
2 15 225 1.3929 1.9401 
3 14.1 198.81 0.4929 0.24291 
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a) Mean chlorate concentration as from Equation (1) 

  607.13
14

5.1901 ===
∑
=

n

y
y

n

i
i

 

b) The range of data as per Equation (2) is 
  minmax yyR −=  
                    2.119.15 −=  
                     7.4=  

c) Residual at each point is shown in Table 2.  For example, at the first data point as per 
Equation (3) 

  yye −= 11  
                            607.130.12 −=  

                6071.1−=  
d) The sum of the square of the residuals as from Equation (4) is 
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e) The standard deviation as per Equation (8) is 
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f) The variance is calculated as from Equation (5) 

  ( )
5499.2     
597.1 22

=
=σ  

4 15.9 252.81 2.2929 5.2572 
5 11.5 132.25 -2.1071 4.4401 
6 14.8 219.04 1.1929 1.4229 
7 11.2 125.44 -2.4071 5.7943 
8 13.7 187.69 0.0929 0.0086224 
9 15.9 252.81 2.2929 5.2572 
10 12.6 158.76 -1.0071 1.0143 
11 14.3 204.49 0.6929 0.48005 
12 12.6 158.76 -1.0071 1.0143 
13 12.1 146.41 -1.5071 2.2715 
14 14.8 219.04 1.1929 1.4229 

∑
=

14

1i

 190.50 2625.3 0.0000 33.149 
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The variance can be calculated using Equation (6) 
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or by using Equation (7) 
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g) The coefficient of variation, vc.  as from Equation (9) is 
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Figure 1 Chlorate concentration data points. 

 
A Brief History of Regression 
 Anyone who is familiar with the Pearson Product Moment Correlation (PPMC) will 
no doubt associate regression principles with the name of Pearson.  Although this association 
may be right, the concept of linear regression was largely due to the work of Galton, a cousin 
of Charles Darwin of the evolution theory fame.  Sir Galton's work on inherited 
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characteristics of sweet peas led to the initial conception of linear regression.  His treatment 
of regression was not mathematically rigorous.  The mathematical rigor and subsequent 
development of multiple regression were due largely to the contributions of his assistant and 
co-worker - Karl Pearson. 
 It is however instructive to note for historical accuracy that the development of 
regression could be attributed to the attempt at answering the question of hereditary - how 
and what characteristics offspring acquire from their progenitor.  Sweet peas were used by 
Galton in his observations of characteristics of next generations of a given species.  Despite 
his poor choice of descriptive statistics and limited mathematical rigor, Galton was able to 
generalize his work over a variety of hereditary problems.  He further arrived at the idea that 
the differences in regression slopes were due to differences in variability between different 
sets of measurements.  In today's appreciation of this, one can say that Galton recognized the 
ratio of variability of two measures was a key factor in determining the slope of the 
regression line. 
 The first rigorous treatment of correlation and regression was the work of Pearson in 
1896.  In the paper in the Philosophical Transactions of the Royal Society of London, 
Pearson showed that the optimum values of both the regression slope and the correlation 
coefficient for a straight line could be evaluated from the product-moment, 
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ii
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yyxx
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, 

where x  and y  are the means of observed x  and y  values, respectively.  In the 1896 paper, 
Pearson had attributed the initial mathematical formula for correlation to Auguste Bravais’ 
work fifty years earlier.  Pearson stated that although Bravais did demonstrate the use of 
product-moment for calculating the correlation coefficient, he did not show that it provided 
the best fit for the data. 
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Chapter 06.02 
Introduction of Regression Analysis 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. know what regression analysis is, 
2. know the effective use of regression, and  
3. enumerate uses and abuses of regression. 

 
What is regression analysis?  

 Regression analysis gives information on the relationship between a response 
(dependent) variable and one or more (predictor) independent variables to the extent that 
information is contained in the data. The goal of regression analysis is to express the 
response variable as a function of the predictor variables. The duality of fit and the accuracy 
of conclusion depend on the data used. Hence non-representative or improperly compiled 
data result in poor fits and conclusions. Thus, for effective use of regression analysis one 
must 

1. investigate the data collection process, 
2. discover any limitations in data collected, and 
3. restrict conclusions accordingly. 

 Once a regression analysis relationship is obtained, it can be used to predict values of 
the response variable, identify variables that most affect the response, or verify hypothesized 
causal models of the response. The value of each predictor variable can be assessed through 
statistical tests on the estimated coefficients (multipliers) of the predictor variables. 
 An example of a regression model is the linear regression model which is a linear 
relationship between response variable, y  and the predictor variable, nixi ...,2,1,   of the 

form 
   nn xxxy ...22110                              (1) 

where  

n ......., 10  are regression coefficients (unknown model parameters), and 

  is the error due to variability in the observed responses. 
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Example 1 

 In the transformation of raw or uncooked potato to cooked potato, heat is applied for 
some specific tune. One might postulate that the amount of untransformed portion of the 
starch ( y ) inside the potato is a linear function of time ( t ) and temperature ( ) of cooking. 
This is represented as 
   210 ty                                (2) 

 Linear as used in linear regression refers to the form of occurrence of the unknown 
parameters, 1  and 2  as ,simple linear multipliers of the predictor variable. Thus, the two 
equations below are also both linear. 
   3210 tty                   (3) 

   210 ty         (4) 

 

Comparison of Regression and Correlation 

 Unlike regression, correlation analysis assesses the simultaneous variability of a 
collection of variables. The relationship is not directional and interest is not on how some 
variables respond to others but on how they are mutually associated. Thus, simultaneous 
variability of a collection of variables is referred to as correlation analysis. 
 
Uses of Regression Analysis 

Three uses for regression analysis are for  
1. prediction  
2. model specification and  
3. parameter estimation.  

 Regression analysis equations are designed only to make predictions. Good 
predictions will not be possible if the model is not correctly specified and accuracy of the 
parameter not ensured.  However, accurate prediction and model specification require that all 
relevant variables be accounted for in the data and the prediction equation be defined in the 
correct functional form for all predictor variables. 
 Parameter estimation is the most difficult to perform because not only is the model 
required to be correctly specified, the prediction must also be accurate and the data should 
allow for good estimation. For example, multicolinearity creates a problem and requires that 
some estimators may not be used. Thus, limitations of data and inability to measure all 
predictor variables relevant in a study restrict the use of prediction equations. 
 
Abuses of Regression Analysis 

Let us examine three common abuses of regression analysis. 
1. Extrapolation  
2. Generalization 
3. Causation 
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Extrapolation 

 If you were dealing in the stock market or even interested in it, then you might 
remember the stock market crash of March 2000. During 1997-1999, investors thought they 
would double their money every year. They started buying fancy cars and houses on credit, 
and living the high life. Little did they know that the whole market was hyped on speculation 
and little economic sense.  The Enron and MCI financial fiascos soon followed.   
 Let us look if we could have safely extrapolated the NASDAQ index1 from past 
years. Below is the table of NASDAQ index, S , as a function of end of year number, t  
(Year 1 is the end of year 1994, and Year 6 is the end of year 1999). 
 
Table 1 NASDAQ index as a function of year number. 

Year Number ( t ) NASDAQ Index ( S )
1 (1994) 752 
2 (1995) 1052 
3 (1996) 1291 
4 (1997) 1570 
5 (1998) 2193 
6 (1999) 4069 

         

S = 168.14t2 - 597.35t + 1361.8
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 Figure 1 The regression line of NASDAQ Index as a function of year number. 
 

                                                 
 
 
 
 
 
 
1 NASDAQ (National Association of Securities Dealers Automated Quotations) index is a composite index 
based on the stock market value of 3,000 companies. The NASDAQ index began on February 5, 1971 with a 
base value of 100. Twenty years later in 1995, NASDAQ index crossed the 1000 mark. It rose as high as 5132 
on March 10, 2000 and currently is at a value of 2282 (February 19, 2006). 
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A relationship 2
210 tataaS   between the NASDAQ index, S , and the year number, t , 

is developed using least square regression and is found to be 8.136137.59714.168 2  ttS .  
The data and the regression line are shown in Figure 1.  The data is given only for Years 1 
through 6 and it is desired to calculate the value for 6t .  This is extrapolation outside the 
model data. The error inherent in this model is shown in Table 2 and Figure 2.  Look at the 
Year 7 and 8 that was not included in the data – the error between the predicted and actual 
values is 119% and 277%, respectively.   
 
Table 2 NASDAQ index as a function of year number. 

Year  
Number ( t ) 

NASDAQ 
Index ( S )

Predicted 
Index 

Absolute Relative  
True Error (%) 

1 (1994) 752 933 24 
2 (1995) 1052 840 20 
3 (1996) 1291 1083 16 
4 (1997) 1570 1663 6 
5 (1998) 2193 2579 18 
6  (1999) 4069 3831 6 
7 (2000) 2471 5419 119 
8 (2001) 1951 7344 276 

  
This illustration is not exaggerated and it is important that a careful use of any given 

model equations is always employed.  At all times, it is imperative to infer the domain of 
independent variables for which a given equation is valid. 
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            Figure 2  Extrapolated curve and actual data for Years 7 and 8. 

  
Generalization 

 Generalization could arise when unsupported or over exaggerated claims are made.  It 
is not often possible to measure all predictor variables relevant in a study.  For example, a 
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study carried out about the behavior of men might have inadvertently restricted the survey to 
Caucasian men only.  Shall we then generalize the result as the attributes of all men 
irrespective of race?  Such use of regression equation is an abuse since the limitations 
imposed by the data restrict the use of the prediction equations to Caucasian men. 
 
Misidentification 

 Finally, misidentification of causation is a classic abuse of regression analysis 
equations.  Regression analysis can only aid in the confirmation or refutation of a causal 
model - the model must however have a theoretical basis.  In a chemical reacting system in 
which two species react to form a product, the amount of product formed or amount of 
reacting species vary with time.  Although a regression equation of species concentration and 
time can be obtained, one cannot attribute time as the causal agent for the varying species 
concentration.  Regression analysis cannot prove causality, rather it can only substantiate or 
contradict causal assumptions.  Anything outside this is an abuse of regression analysis 
method. 
 
Least Squares Methods 

 This is the most popular method of parameter estimation for coefficients of regression 
models. It has well known probability distributions and gives unbiased estimators of 
regression parameters with the smallest variance.   
 We wish to predict the response to n  data points ),(),......,,(),,( 2211 nn yxyxyx  by a 

regression model given by 
 )(xfy           (6) 
where, the function )(xf  has regression constants that need to be estimated.   
 For example  
 xaaxf 10)(   is a straight-line regression model with constants 0a and 1a  

xaeaxf 1
0)(  is an exponential model with constants 0a and 1a  

 2
210)( xaxaaxf  is a quadratic model with constants 0a , 1a  and 2a  

 A measure of goodness of fit, that is how the regression model )(xf  predicts the 

response variable y  is the magnitude of the residual, iE  at each of the n  data points. 

 nixfyE iii ,....2,1),(                     (7) 

Ideally, if all the residuals iE  are zero, one may have found an equation in which 

all the points lie on a model. Thus, minimization of the residual is an objective of obtaining 
regression coefficients.  In the least squares method, estimates of the constants of the models 
are chosen such that minimization of the sum of the squared residuals is achieved, that is 

minimize 


n

i
iE

1

2 .  

 
Why minimize the sum of the square of the residuals?  
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 Why not for instance minimize the sum of the residual errors, 


n

i
iE

1

, or the sum of 

the absolute values of the residuals, 


n

i
iE

1

? Alternatively, constants of the model can be 

chosen such that the average residual is zero without making individual residuals small. Will 
any of these criteria yield unbiased parameters with the smallest variance? All of these 
questions will be answered when we discuss linear regression in the next chapter (Chapter 
06.03). 
 

Regression  
Topic Introduction to Regression 
Summary Textbook notes for the introduction to regression 
Major All engineering majors 
Authors Egwu Kalu, Autar Kaw 
Date October 11, 2008  
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Chapter 06.03 
Linear Regression 
 
 
 
 
 
After reading this chapter, you should be able to 

1. define regression, 
2. use several minimizing of residual criteria to choose the right criterion, 
3. derive the constants of a linear regression model based on least squares method 

criterion, 
4. use in examples, the derived formulas for the constants of a linear regression model, 

and 
5. prove that the constants of the linear regression model are unique and correspond to 

a minimum. 
 
 Linear regression is the most popular regression model.  In this model, we wish to 
predict response to n  data points ),(),......,,(),,( 2211 nn yxyxyx  by a regression model given 
by 
 xaay 10 +=                         (1) 
where 0a  and 1a  are the constants of the regression model. 
 A measure of goodness of fit, that is, how well xaa 10 +  predicts the response variable 
y  is the magnitude of the residual iε  at each of the n  data points. 

 )( 10 iii xaayE +−=                      (2) 
 Ideally, if all the residuals iε  are zero, one may have found an equation in which all 
the points lie on the model.  Thus, minimization of the residual is an objective of obtaining 
regression coefficients.   
 The most popular method to minimize the residual is the least squares methods, 
where the estimates of the constants of the models are chosen such that the sum of the 

squared residuals is minimized, that is minimize ∑
=

n

i
iE

1

2 .   

 
 Why minimize the sum of the square of the residuals?  Why not, for instance, 
minimize the sum of the residual errors or the sum of the absolute values of the residuals?  
Alternatively, constants of the model can be chosen such that the average residual is zero 
without making individual residuals small.  Will any of these criteria yield unbiased 



06.03.2                                                        Chapter 06.03 
 

parameters with the smallest variance?  All of these questions will be answered below.  Look 
at the data in Table 1. 
      
Table 1   Data points. 

x  y  
2.0 4.0 
3.0 6.0 
2.0 6.0 
3.0 8.0 

      
To explain this data by a straight line regression model, 
 xaay 10 +=                        (3) 

and using minimizing ∑
=

n

i
iE

1

as a criteria to find 0a  and 1a , we find that for (Figure 1) 

 44 −= xy                       (4) 

 
       Figure 1 Regression curve 44 −= xy  for y  vs. x  data. 
 

the sum of the residuals, 0
4

1
=∑

=i
iE  as shown in the Table 2. 

  Table 2  The residuals at each data point for regression model 44 −= xy . 
x  y  predictedy  predictedyy −=ε  
2.0 4.0 4.0 0.0 
3.0 6.0 8.0 -2.0 
2.0 6.0 4.0 2.0 
3.0 8.0 8.0 0.0 

 0
4

1
=∑

=i
iε  
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 So does this give us the smallest error? It does as 0
4

1

=∑
=i

iE . But it does not give 

unique values for the parameters of the model. A straight-line of the model  
 6=y                        (5) 

also makes 0
4

1

=∑
=i

iE as shown in the Table 3. 

  Table 3  The residuals at each data point for regression model 6=y  
x  y  predictedy  predictedyy −=ε  
2.0 4.0 6.0 -2.0 
3.0 6.0 6.0 0.0 
2.0 6.0 6.0 0.0 
3.0 8.0 6.0 2.0 

 0
4

1

=∑
=i

iE  

 

 
 Figure 2 Regression curve 6=y  for y  vs. x  data. 

 
 Since this criterion does not give a unique regression model, it cannot be used for 
finding the regression coefficients. Let us see why we cannot use this criterion for any 
general data.  We want to minimize  

 ( )∑∑
==

−−=
n

i
ii

n

i
i xaayE

1
10

1

                    (6) 

Differentiating Equation (6) with respect to 0a  and 1a , we get  

 n
a

E n

i

n

i
i

−=−=
∂

∂

∑
∑

=

=

10

1 1             (7) 
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_

11

1 xnx
a

E n

i
i

n

i
i

−=−=
∂

∂

∑
∑

=

=           (8) 

Putting these equations to zero, give 0=n  but that is not possible.  Therefore, unique values 
of 0a  and 1a  do not exist. 

You may think that the reason the minimization criterion ∑
=

n

i
iE

1

does not work is that 

negative residuals cancel with positive residuals.  So is minimizing ∑
=

n

i
iE

1

 better?  Let us 

look at the data given in the Table 2 for equation 44 −= xy .  It makes 4
4

1

=∑
=i

iE  as shown 

in the following table. 
 
 Table 4   The absolute residuals at each data point when employing 44 −= xy . 

x  y  predictedy  predictedyy −=ε  
2.0 4.0 4.0 0.0 
3.0 6.0 8.0 2.0 
2.0 6.0 4.0 2.0 
3.0 8.0 8.0 0.0 

4
4

1
=∑

=i
iε  

The value of 4
4

1

=∑
=i

iE  also exists for the straight line model 6=y . No other straight line 

model for this data has 4
4

1

<∑
=i

iE .  Again, we find the regression coefficients are not unique, 

and hence this criterion also cannot be used for finding the regression model.  
Let us use the least squares criterion where we minimize  

 ( )
2

1
10

1

2 ∑∑
==

−−==
n

i
ii

n

i
ir xaayES          (9) 

rS  is called the sum of the square of the residuals. 
To find 0a  and 1a , we minimize rS  with respect to 0a  and 1a . 

 ( )( ) 012
1

10
0

=−−−=
∂
∂ ∑

=

n

i
ii

r xaay
a
S                             (10) 

 ( )( ) 02
1

10
1

=−−−=
∂
∂ ∑

=

n

i
iii

r xxaay
a
S                             (11) 

giving  

 0
1 1

1
1

0 =++−∑ ∑∑
= ==

n

i

n

i
i

n

i
i xaay                              (12) 
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Noting that 0000
1

0 ... naaaaa
n

i
=+++=∑

=

 

 ∑∑
==

=+
n

i
i

n

i
i yxana

11
10                               (14) 

 ∑∑∑
===

=+
n

i
ii

n

i
i

n

i
i yxxaxa

11

2
1

1
0                                                                                     (15) 

 
Figure 3 Linear regression of y  vs. x  data showing residuals and square of residual at a 
typical point, ix . 
 
       
Solving the above Equations (14) and (15) gives 
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Redefining 

( )11 , yx

( )33, yx

( )22 , yx

),( nn yx
( )ii yx ,

iii xaayE 10 −−=

y 

x 

xaay 10 +=  
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1
yxnyxS

n

i
iixy −=∑

=

                              (18) 
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n
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n
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n

i
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== 1
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                               (21) 

we can rewrite 

 
xx

xy

S
S

a =1                                (22) 

 
_

1

_

0 xaya −=                                (23) 
 
Example 1 

The torque T  needed to turn the torsional spring of a mousetrap through an angle, θ  is given 
below 
   Table 5 Torque versus angle for a torsion spring. 

Angle, θ  
Radians 

Torque, T  
mN ⋅  

0.698132 0.188224 
0.959931 0.209138 
1.134464 0.230052 
1.570796 0.250965 
1.919862 0.313707 

 
Find the constants 1k  and 2k  of the regression model  
 θ21 kkT +=  
 
Solution 
Table 6 shows the summations needed for the calculation of the constants of the regression 
model. 
   
Table 6 Tabulation of data for calculation of needed summations. 

i θ  T  2θ  θT  
1 radians mN ⋅  radians 2  mN ⋅  
2 0.698132 0.188224 11087388.4 −×  11031405.1 −×  
3 0.959931 0.209138 11021468.9 −×  11000758.2 −×  
4 1.134464 0.230052 1.2870 11060986.2 −×  
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5 1.570796 0.250965 2.4674 11094215.3 −×  
6 1.919862 0.313707 3.6859 11002274.6 −×  

∑
=

5

1i
 6.2831 1.1921 8.8491 1.5896 

 
   5=n  
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n

T
T i

i∑
==

5

1
_

 

    
5

1921.1
=  

      1103842.2 −×= N-m 

 
n

i
i∑

==

5

1
_

θ
θ  

    
5

2831.6
=  

      radians 2566.1=  

           
_

2

_

1 θkTk −=  
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Figure 4  Linear regression of torque vs. angle data 

 
Example 2 
To find the longitudinal modulus of a composite material, the following data, as given in 
Table 7, is collected. 
 
   Table 7 Stress vs. strain data for a composite material. 

Strain 
(%) 

Stress  
( MPa ) 

0 0 
0.183 306 
0.36 612 
0.5324 917 
0.702 1223 
0.867 1529 
1.0244 1835 
1.1774 2140 
1.329 2446 
1.479 2752 
1.5 2767 
1.56 2896 

 
Find the longitudinal modulus E  using the regression model. 
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 εσ E=                                (24) 
 
Solution 
Rewriting data from Table 7, stresses versus strain data in Table 8 
   
Table 8  Stress vs strain data for a composite in SI system of units 

Strain  
( m/m ) 

Stress  
( Pa ) 

0.0000 0.0000 
3108300.1 −×  8100600.3 ×  
3106000.3 −×  8101200.6 ×  
3103240.5 −×  8101700.9 ×  
3100200.7 −×  9102230.1 ×  
3106700.8 −×  9105290.1 ×  
2100244.1 −×  9108350.1 ×  
2101774.1 −×  9101400.2 ×  
2103290.1 −×  9104460.2 ×  
2104790.1 −×  9107520.2 ×  
2105000.1 −×  9107670.2 ×  
2105600.1 −×  9108960.2 ×  

 
Applying the least square method, the residuals iγ  at each data point is 
 iii Eεσγ −=  
The sum of square of the residuals is 

 ∑
=

=
n

i
irS

1

2γ  

      ( )∑
=

−=
n

i
ii E

1

2εσ  

Again, to find the constant E , we need to minimize rS  by differentiating with respect to E  
and then equating to zero 

 ( ) 0)(2
1

=−−= ∑
=

i

n

i
ii

r E
dE
dS εεσ  

From there, we obtain  

 
∑

∑

=

== n

i
i

n

i
ii

E

1

2

1

ε

εσ
                    (25) 

Note, Equation (25) only so far has shown that it corresponds to a local minimum or 
maximum.  Can you show that it corresponds to an absolute minimum.  
The summations used in Equation (25) are given in the Table 9. 
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  Table 9 Tabulation for Example 2 for needed summations 
i  ε  σ  2ε  εσ  
1 0.0000 0.0000 0.0000 0.0000 
2 3108300.1 −×  8100600.3 ×  6103489.3 −×  5105998.5 ×  
3 3106000.3 −×  8101200.6 ×  5102960.1 −×  6102032.2 ×  
4 3103240.5 −×  8101700.9 ×  5108345.2 −×  6108821.4 ×  
5 3100200.7 −×  9102230.1 ×  5109280.4 −×  6105855.8 ×  
6 3106700.8 −×  9105290.1 ×  5105169.7 −×  7103256.1 ×  
7 2100244.1 −×  9108350.1 ×  4100494.1 −×  7108798.1 ×  
8 2101774.1 −×  9101400.2 ×  4103863.1 −×  7105196.2 ×  
9 2103290.1 −×  9104460.2 ×  4107662.1 −×  7102507.3 ×  
10 2104790.1 −×  9107520.2 ×  4101874.2 −×  7100702.4 ×  
11 2105000.1 −×  9107670.2 ×  4102500.2 −×  7101505.4 ×  
12 2105600.1 −×  9108960.2 ×  4104336.2 −×  7105178.4 ×  

∑
=

12

1i
   3102764.1 −×  8103337.2 ×  

 
 12=n  

 ∑
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−×=
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 ∑
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Figure 5  Linear regression model of stress vs. strain for a composite material. 

 
QUESTION: 
Given n  data pairs, ( ) ( )nn yxyx ,,,, 11  , do the values of the two constants 0a and 1a in the 
least squares straight-line regression model xaay 10 +=  correspond to the absolute minimum 
of the sum of the squares of the residuals?  Are these constants of regression unique? 
ANSWER: 

Given n  data pairs ( ) ( )nn yxyx ,,,, 11  , the best fit for the straight-line regression model  
 xaay 10 +=                                         (A.1) 
is found by the method of least squares.  Starting with the sum of the squares of the residuals 

rS   

 ( )∑
=

−−=
n

i
iir xaayS

1

2
10                 (A.2) 

and using 

 0
0

=
∂
∂
a
Sr                   (A.3) 

 0
1

=
∂
∂

a
Sr                   (A.4) 

gives two simultaneous linear equations whose solution is 
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But do these values of 0a and 1a  give the absolute minimum of value of rS (Equation (A.2))?  
The first derivative analysis only tells us that these values give a local minima or maxima of 

rS , and not whether they give an absolute minimum or maximum.  So, we still need to figure 
out if they correspond to an absolute minimum. 
 
We need to first conduct a second derivative test to find out whether the point ),( 10 aa  from 
Equation (A.5) gives a local minimum or local maximum of rS .  Only then can we proceed 
to show if this local minimum (or maximum) also corresponds to the absolute minimum (or 
maximum). 
 
What is the second derivative test for a local minimum of a function of two variables? 
 
If you have a function ( )yxf ,  and we found a critical point ( )ba,  from the first derivative 
test, then ( )ba,  is a minimum point if  

 0
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From Equation (A.2) 
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So, we satisfy condition (A.7) because from Equation (A.10) we see that n2  is a positive 

number. Although not required, from Equation (A.11) we see that ∑
=

n

i
ix

1

22 is also a positive 

number as assuming that all x data points are NOT zero is reasonable.   
Is the other condition (Equation (A.6)) for rS being a minimum met?  Yes, we can show 
(proof not given that the term is positive) 
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So the values of 0a  and 1a  that we have in Equation (A.5) do correspond to a local minimum 
of rS .  But, is this local minimum also an absolute minimum.  Yes, as given by Equation 
(A.5), the first derivatives of rS are zero at only one point.  This observation also makes the 
straight-line regression model based on least squares to be unique. 
As a side note, the denominator in Equations (A.5) is nonzero as shown by Equation (A.13).  
This shows that the values of 0a and 1a  are finite. 
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Chapter 06.04 
Nonlinear Models for Regression 
 
 
 
 
 
After reading this chapter, you should be able to 

1. derive constants of nonlinear regression models, 
2. use in examples, the derived formula for the constants of the nonlinear regression 

model, and 
3. linearize (transform) data to find constants of some nonlinear regression models. 

 
 From fundamental theories, we may know the relationship between two variables.  
An example in chemical engineering is the Clausius-Clapeyron equation that relates vapor 
pressure P  of a vapor to its absolute temperature, T . 

 ( )
T
BAP +=log                      (1) 

where A  and B  are the unknown parameters to be determined.  The above equation is not 
linear in the unknown parameters.  Any model that is not linear in the unknown parameters is 
described as a nonlinear regression model. 
 
Nonlinear models using least squares 
 The development of the least squares estimation for nonlinear models does not 
generally yield equations that are linear and hence easy to solve.  An example of a nonlinear 
regression model is the exponential model.  
 
Exponential model 
 Given ( )11,yx , ( )22 ,yx , . . . ( )nn ,yx , best fit bxaey =  to the data.  The variables a  and 
b  are the constants of the exponential model.  The residual at each data point ix  is 
 ibx

ii aeyE −=                       (2) 
The sum of the square of the residuals is 
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To find the constants a  and b  of the exponential model, we minimize rS  by differentiating 
with respect to a and b and equating the resulting equations to zero. 
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 Equations (5a) and (5b) are nonlinear in a  and b  and thus not in a closed form to be 
solved as was the case for linear regression.  In general, iterative methods (such as 
Gauss-Newton iteration method, method of steepest descent, Marquardt's method, direct 
search, etc) must be used to find values of a  and b . 
 However, in this case, from Equation (5a), a can be written explicitly in terms of b as 

 
∑

∑

=

== n

i

bx

n

i

bx
i

i

i

e

ey
a

1

2

1                       (6) 

Substituting Equation (6) in (5b) gives 
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This equation is still a nonlinear equation in b and can be solved best by numerical methods 
such as the bisection method or the secant method. 
 
Example 1 
Many patients get concerned when a test involves injection of a radioactive material.  For 
example for scanning a gallbladder, a few drops of Technetium-99m isotope is used.  Half of 
the technetium-99m would be gone in about 6 hours.  It, however, takes about 24 hours for 
the radiation levels to reach what we are exposed to in day-to-day activities.  Below is given 
the relative intensity of radiation as a function of time. 
 
  Table 1  Relative intensity of radiation as a function of time 

)hrs( t  0 1 3 5 7 9 
γ  1.000 0.891 0.708 0.562 0.447 0.355 
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If the level of the relative intensity of radiation is related to time via an exponential formula 
tAeλγ = , find  

a) the value of the regression constants A  and λ , 
b) the half-life of Technium-99m, and 
c) the radiation intensity after 24 hours. 

 
Solution 

a) The value of λ  is given by solving the nonlinear Equation (7), 
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and then the value of A  from Equation (6), 
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 Equation (8) can be solved for λ  using bisection method.  To estimate the initial 
guesses, we assume 0.120−=λ  and 0.110−=λ .  We need to check whether these values 
first bracket the root of ( ) 0=λf .  At 0.120−=λ , the table below shows the evaluation of 
( )0.120−f . 

 
  Table 2 Summation value for calculation of constants of model 
   
 
 
 
 
 
 
 
 
 
From Table 2 
 6=n  

 2501.6120.0
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i etγ  
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1 
2 
3 
4 
5 
6 

0 
1 
3 
5 
7 
9 

1 
0.891 
0.708 
0.562 
0.447 
0.355 

0.00000 
0.79205 
1.4819 
1.5422 
1.3508 
1.0850 

1.00000 
0.79205 
0.49395 
0.30843 
0.19297 
0.12056 

1.00000 
0.78663 
0.48675 
0.30119 
0.18637 
0.11533 

0.00000 
0.78663 
1.4603 
1.5060 
1.3046 
1.0379 

∑
=

6

1i
   6.2501 2.9062 2.8763 6.0954 
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 ( ) ( ) ( )0954.6
8763.2
9062.22501.6120.0 −=−f  

        091357.0=  
Similarly 

 ( ) 10099.0110.0 −=−f  
Since 
 ( ) ( ) 0110.0120.0 <−×− ff , 
the value of  λ  falls in the bracket of [ ]0.1100.120,−− .  The next guess of the root then is  

 ( )
2

110.0120.0 −+−
=λ  

               115.0−=  
Continuing with the bisection method, the root of ( ) 0=λf  is found as 11508.0−=λ .  This 
value of the root was obtained after 20 iterations with an absolute relative approximate error 
of less than 0.000008%. 
From Equation (9), A  can be calculated as 
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The regression formula is hence given by 
 te 11508.0 99983.0 −=γ  
 

b) Half life of Technetium-99m is when 
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c) The relative intensity of the radiation after 24 hrs is  
    ( )2411508.099983.0 −×= eγ  
    2103160.6 −×=  

This implies that only %3171.6100
99983.0

103160.6 2

=×
× −

of the initial radioactive intensity is left 

after 24 hrs. 
 

  
Figure 1 Relative intensity of radiation as a function of temperature using an 
exponential regression model. 

 
Growth model 
 Growth models common in scientific fields have been developed and used 
successfully for specific situations.  The growth models are used to describe how something 
grows with changes in the regressor variable (often the time).  Examples in this category 
include growth of thin films or population with time.  Growth models include 

 cxbe
ay −+

=
1

                               (10) 

where ba  ,  and c  are the constants of the model. At 0=x , 
b1

ay
+

=  and as ∞→x , 

ay → .  
The residuals at each data point ix , are 
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The sum of the square of the residuals is 

 ∑
=

=
n

i
ir ES

1

2  

                
2

1 1∑
=

− 







+
−=

n

i
cxi ibe

ay                              (12) 

To find the constants a , b  and c  we minimize rS  by differentiating with respect to a , 
b and c , and equating the resulting equations to zero. 
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One can use the Newton-Raphson method to solve the above set of simultaneous nonlinear 
equations for a , b  and c . 
 
Example 2 
The height of a child is measured at different ages as follows. 
 
Table 3 Height of the child at different ages. 

)yrs( t  0 5.0 8 12 16 18 
)in(H  20 36.2 52 60 69.2 70 

 
Estimate the height of the child as an adult of 30 years of age using the growth model, 

 ctbe
aH −+

=
1

 

Solution 

The saturation growth model of height, H  vs. age, t  is given as  

 ctbe
aH −+

=
1

 

where the constants a , b  and c  are the roots of the simultaneous nonlinear equation system 
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We need initial guesses of the roots to get the iterative process started to find the root of 
those equations. Suppose we use three of the given data points such as (0, 20), (12, 60) and 
(18, 70) to find the initial guesses of roots; we have  

 )0(1
20 cbe

a
−+

=  

 )12(1
60 cbe

a
−+

=  

 )18(1
70 cbe

a
−+

=  

One can solve three unknowns a , b  and c  from the three equations as 
 1105534.7 ×=a  
 7767.2=b  
 1109772.1 −×=c  
Applying the Newton-Raphson method for simultaneous nonlinear equations, one can get the 
roots  
 1104321.7 ×=a  
 8233.2=b  
 1101715.2 −×=c  
The saturation growth model of the height of the child then is 

 
te

H 1101715.2

1

8233.21
104321.7

−×−+

×
=  

The height of the child as an adult of 30 years of age is 

 
"74

8233.21
104321.7

)30(101715.2

1

1

=
+

×
=

××− −

e
H

 

Polynomial Models 
Given n  data points ),(),......,,(),,( 2211 nn yxyxyx  use least squares method to regress the 
data to an thm  order polynomial. 
 nmxaxaxaay m

m <++++=  ,2
210                             (15) 

The residual at each data point is given by  
 m

imiii xaxaayE −−−−= ...10                             (16) 
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The sum of the square of the residuals is given by 
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To find the constants of the polynomial regression model, we put the derivatives with respect 
to ia  to zero, that is, 

 

 
Figure 2 Height of child as a function of age saturation growth model. 
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Setting those equations in matrix form gives 
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The above are solved for maaa ,...,, 10  
 
Example 3 
To find contraction of a steel cylinder, one needs to regress the thermal expansion coefficient 
data to temperature 
 
 Table 4 The thermal expansion coefficient at given different temperatures 

Temperature, T  
)F(  

Coefficient of thermal 
expansion,α )Fin/in/(   

80 61047.6 −×  
40 61024.6 −×  
-40 61072.5 −×  
-120 61009.5 −×  
-200 61030.4 −×  
-280 61033.3 −×  
-340 61045.2 −×  

 
Fit the above data to 2

210 TaTaaα ++=  
 

Solution 
Since 2

210 TaTaaα ++=  is the quadratic relationship between the thermal expansion 
coefficient and the temperature, the coefficients 210  , , aaa  are found as follows 
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Table 5 Summations for calculating constants of model 
i  )F(T   α )Fin/in/(   2T  3T  

1 80 
6104700.6 −×

 
3104000.6 ×  5101200.5 ×  

2 40 
6102400.6 −×

 
3106000.1 ×  4104000.6 ×  

3 -40 
6107200.5 −×

 
3106000.1 ×  4104000.6 ×−  

4 -120 
6100900.5 −×

 
4104400.1 ×  6107280.1 ×−  

5 -200 
6103000.4 −×

 
4100000.4 ×  6100000.8 ×−  

6 -280 
6103300.3 −×

 
4108400.7 ×  7101952.2 ×−  

7 -340 
6104500.2 −×

 
5101560.1 ×  7109304.3 ×−  

∑
=

7

1i

 

2106000.8 ×−
 

5103600.3 −×
 

5105800.2 ×  7100472.7 ×−  

    
Table 5 (cont) 

i  4T  α×T  α×2T  
1 7100960.4 ×  4101760.5 −×  2101408.4 −×  
2 6105600.2 ×  4104960.2 −×  3109840.9 −×  

3 6105600.2 ×  
4102880.2 −×−

 
3101520.9 −×  

4 8100736.2 ×  
4101080.6 −×−

 
2103296.7 −×  

5 9106000.1 ×  
4106000.8 −×−

 
1107200.1 −×  

6 9101466.6 ×  
4103240.9 −×−

 
1106107.2 −×  

7 
10103363.1 ×

 
4103300.8 −×−

 
1108322.2 −×  

∑
=

7

1i

 10101363.2 ×
 

3106978.2 −×−
 

1105013.8 −×  

  
 7=n  
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1
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iT  
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Solving the above system of simultaneous linear equations, we get 
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The polynomial regression model is 

 
21196

2
210

101.2218106.2782106.0217    TT
TaTaa

−−− ×−×+×=

++=α  

 
Transforming the data to use linear regression formulas 
Examination of the nonlinear models above shows that in general iterative methods are 
required to estimate the values of the model parameters.  It is sometimes useful to use simple 
linear regression formulas to estimate the parameters of a nonlinear model.  This involves 
first transforming the given data such as to regress it to a linear model.  Following the 
transformation of the data, the evaluation of model parameters lends itself to a direct solution 
approach using the least squares method.  Data for nonlinear models such as exponential, 
power, and growth can be transformed. 
Exponential Model 
As given in Example 1, many physical and chemical processes are governed by the 
exponential function. 
 bxae=γ                                (20) 
Taking natural log of both sides of Equation (20) gives 
 bxa += lnlnγ                               (21) 
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Let  
 γln=z  
 aa ln0 =  implying oaea =  
 ba =1  
then 
 xaaz 10 +=                                (22) 
 
 

 

 
Figure 3 Second-order polynomial regression model for coefficient of thermal expansion 
as a function of temperature. 

 
 
The data z  versus x  is now a linear model. The constants 0a  and 1a  can be found using the 
equation for the linear model as  
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Now since 0a  and 1a  are found, the original constants with the model are found as 
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1
aea

ab
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                                     (24a,b) 

 
Example 4 
Repeat Example 1 using linearization of data. 
 
Solution 

 tAeλγ =  
 ( ) ( ) tA λγ += lnln  
Assuming 
 γln=y  
 ( )Aa ln0 =  
 λ=1a  
We get 
 taay 10 +=  
This is a linear relationship between y  and t . 
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 taya 10 −=                                      (25a,b) 
 
  Table 6 Summations of data to calculate constants of model. 

i  it  iγ  iiy γln=  ii yt  2
it  

1 
2 
3 
4 
5 
6 

0 
1 
3 
5 
7 
9 

1 
0.891 
0.708 
0.562 
0.447 
0.355 

0.00000 
-0.11541 
-0.34531 
-0.57625 
-0.80520 
-1.0356 

0.0000 
-0.11541 
-1.0359 
-2.8813 
-5.6364 
-9.3207 

0.0000 
1.0000 
9.0000 
25.000 
49.000 
81.000 

∑
=

6

1i

 25.000  -2.8778 -18.990 165.00 

 
 6=n  

 000.25
6

1
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=

=
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=

−=
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8778.2
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 ∑
=

−=
6

1
990.18

i
ii yt  

 ∑
=

=
6

1

2 00.165
i

it  

From Equation (25a,b) we have 

 ( ) ( )( )
( ) ( )21 2500.1656

8778.225990.186
−

−−−
=a  

 11505.0−=  

 ( )
6
2511505.0

6
8778.2

0 −−
−

=a  

 4106150.2 −×−=  
Since 
 ( )Aa ln0 =  
 0aeA =  

     
4106150.2 −×−= e  

     99974.0=  
 11505.01 −== aλ  
The regression formula then is 
 te 11505.099974.0 −×=γ  
Compare the formula to the one obtained without data linearization, 
 te 11508.099983.0 −×=γ  
b) Half-life is when 

 
02

1

=

=
t

γγ  

 

( )

hours0248.6
)5.0ln(11505.0

5.0

99974.0
2
199974.0

11508.0

)0(11505.011505.0

=
=−

=

=×

−

−−

t
t

e

ee

t

t

 

c) The relative intensity of radiation, after 24 hours is 
 ( )2411505.099974.0 −= eγ  
    063200.0=  

This implies that only %3216.6100
99974.0

103200.6 2

=×
× −

of the initial radioactivity is left after 

24 hours. 
Logarithmic Functions 
The form for the log regression models is 
 ( )xy ln10 ββ +=                             (26) 
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This is a linear function between y  and ( )xln  and the usual least squares method applies in 
which y  is the response variable and ( )xln  is the regressor. 
 

 
 
 
 
 

 
Figure 4 Exponential regression model with transformed data for relative intensity of 
radiation as a function of temperature. 

 
Example 5 

Sodium borohydride is a potential fuel for fuel cell. The following overpotential ( )η  vs. 
current ( )i  data was obtained in a study conducted to evaluate its electrochemical kinetics. 
 
 Table 7 Electrochemical Kinetics of borohydride data. 

)( Vη   -0.29563 -0.24346 -0.19012 -0.18772 -0.13407 -0.0861 
)( Ai   0.00226 0.00212 0.00206 0.00202 0.00199 0.00195 

 
At the conditions of the study, it is known that the relationship that exists between the 
overpotential ( )η  and current ( )i  can be expressed as 
 iba ln+=η                             (27) 
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where a  is an electrochemical kinetics parameter of borohydride on the electrode. Use the 
data in Table 7 to evaluate the values of a  and b . 
 
Solution 
Following the least squares method, Table 8 is tabulated where  
 ix ln=   
 η=y  
We obtain 
 bxay +=                                (28) 
This is a linear relationship between y  and x , and the coefficients b  and a  are found as 
follow 
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 xbya −=                           (29a,b) 
 
  Table 8 Summation values for calculating constants of model 

# i  η=y  )ln(ix =  2x  yx×  
1 0.00226 -0.29563 -6.0924 37.117 1.8011 
2 0.00212 -0.24346 -6.1563 37.901 1.4988 
3 0.00206 -0.19012 -6.1850 38.255 1.1759 
4 0.00202 -0.18772 -6.2047 38.498 1.1647 
5 0.00199 -0.13407 -6.2196 38.684 0.83386 
6 0.00195 -0.08610 -6.2399 38.937 0.53726 

∑
=

6

1i

 0.012400 -1.1371 -37.098 229.39 7.0117 

 
 6=n  

 ∑
=

−=
6

1
098.37

i
ix  

 ∑
=

−=
6

1
1371.1

i
iy  

 ∑
=

=
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1
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i
ii yx  

 ∑
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2 39.229
i
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( ) ( )( )

( ) ( )
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098.3739.2296
1371.1098.370117.76
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−−−
=b
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( )

5990.8
6
098.373601.1

6
1371.1

−=

−
−−

−
=a

 

Hence 
iln3601.15990.8 ×−−=η  

  
 
 

 
             Figure 5 Overpotential as a function of current. )(Vη  
 

Power Functions 
The power function equation describes many scientific and engineering phenomena. In 
chemical engineering, the rate of chemical reaction is often written in power function form as 
 baxy =                                (30) 
The method of least squares is applied to the power function by first linearizing the data (the 
assumption is that b  is not known). If the only unknown is a , then a linear relation exists 
between bx  and y . The linearization of the data is as follows. 
 ( ) ( ) ( )xbay lnlnln +=                               (31) 
The resulting equation shows a linear relation between ( )yln  and ( )xln . 
Let  
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 aa ln0 =  implying 0aea =  
 ba =1  
we get 
 waaz 10 +=                                (32) 
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                        (33a,b) 

Since 0a  and 1a  can be found, the original constants of the model are 

 
0

1
aea

ab

=

=
                          (34a,b) 

 
Example 6 
The progress of a homogeneous chemical reaction is followed and it is desired to evaluate the 
rate constant and the order of the reaction. The rate law expression for the reaction is known 
to follow the power function form 
 nkCr =−                                 (35) 
Use the data provided in the table to obtain n  and k . 
 
Table 9 Chemical kinetics. 

gmol/l)(AC  4 2.25 1.45 1.0 0.65 0.25 0.006 
s)gmol/l( ⋅− Ar  0.398 0.298 0.238 0.198 0.158 0.098 0.048 

   
Solution 
Taking the natural log of both sides of Equation (35), we obtain 
 ( ) ( ) ( )Cnkr lnlnln +=−  
Let  
 ( )rz −= ln  
 ( )Cw ln=  

 )ln(0 ka =  implying that 0aek =                                  (36) 
 na =1                                       (37) 
We get 
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 waaz 10 +=  
This is a linear relation between z  and w , where 
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Table 10 Kinetics rate law using power function 

i  C  r−  w  z  zw×  2w  
1 4 0.398 1.3863 -0.92130 -1.2772 1.9218 
2 2.25 0.298 0.8109 -1.2107 -0.9818 0.65761 
3 1.45 0.238 0.3716 -1.4355 -0.5334 0.13806 
4 1 0.198 0.0000 -1.6195 0.0000 0.00000 
5 0.65 0.158 -0.4308 -1.8452 0.7949 0.18557 
6 0.25 0.098 -1.3863 -2.3228 3.2201 1.9218 
7 0.006 0.048 -5.1160 -3.0366 15.535 26.173 

∑
=

7

1i
   -4.3643 -12.391 16.758 30.998 

   
 7=n  

 ∑
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1
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i
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From Equation (38a,b) 

 
( ) ( ) ( )

( ) ( )
31943.0

3643.4998.307
391.123643.4758.167
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From Equation (36) and (37), we obtain 

 
20782.0

5711.1

=
= −ek

 

 
31941.0

1

=
= an

 

Finally, the model of progress of that chemical reaction is 
 31941.020782.0 Cr ×=−  

 

 
Figure 6 Kinetic chemical reaction rate as a function of concentration. 

 
Growth Model 
Growth models common in scientific fields have been developed and used successfully for 
specific situations.  The growth models are used to describe how something grows with 
changes in a regressor variable (often the time).  Examples in this category include growth of 
thin films or population with time.  In the logistic growth model, an example of a growth 
model in which a measurable quantity y  varies with some quantity x  is 

 
xb

axy
+

=                                (39) 
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For 0=x , 0=y  while as ∞→x , ay → .  To linearize the data for this method, 

 

axa
b
ax

xb
y

11    

1

+=

+
=

                               (40) 

Let  

 
y

z 1
=  

 
x

w 1
= , 

 
a

a 1
0 =  implying that 

0

1
a

a =  

 
a
ba =1  implying 

0

1
1 

a
aaab =×=  

Then  
 waaz 10 +=                                (41) 
The relationship between z  and w  is linear with the coefficients 0a  and found as follows. 
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Finding 0a  and 1a , then gives the constants of the original growth model as 

 0

1
a

a =
 

 
0

1

a
ab =                           (43a,b) 
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Chapter 06.05 
Adequacy of Models for Regression 
 
 
After reading this chapter, you should be able to 

1. determine if a linear regression model is adequate 
2. determine how well the linear regression model predicts the response variable. 

 
Quality of Fitted Model 
 In the application of regression models, one objective is to obtain an equation 

)(xfy =  that best describes the n  response data points ),(),.......,,(),,( 2211 nn yxyxyx .  
Consequently, we are faced with answering two basic questions. 

1. Does the model )(xfy =  describe the data adequately, that is, is there an adequate 
fit? 

2. How well does the model predict the response variable (predictability)? 
 To answer these questions, let us limit our discussion to straight line models as 
nonlinear models require a different approach.  Some authors [1] claim that nonlinear model 
parameters are not unbiased. 
 To exemplify our discussion, we will take example data to go through the process of 
model evaluation.  Given below is the data for the coefficient of thermal expansion vs. 
temperature for steel.  We assume a linear relationship between the data as 
 TaaT 10)( +=α  
 
Table 1 Values of coefficient of thermal expansion vs. temperature. 

F)(T  F)μin/in/( α  
-340 
-260 
-180 
-100 
-20 
60 

2.45 
3.58 
4.52 
5.28 
5.86 
6.36 

Following the procedure for conducting linear regression as given in Chapter 06.03, we get 
 TT 0096964.00325.6)( +=α  
Let us now look at how we can evaluate the adequacy of a linear regression model. 
 
1. Plot the data and the regression model.   
Figure 1 shows the data and the regression model.  From a visual check, it looks like the 
model explains the data adequately. 
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Figure 1 Plot of coefficient of thermal expansion vs. temperature data points and regression 
line. 
 
2. Calculate the standard error of estimate.   
The standard error of estimate is defined as  

 
2/ −

=
n

Ss r
Tα  

where 

 ∑
=

−−=
n

i
iir TaaS

1

2
10 )(α  

 
Table 2 Residuals for data. 

iT  iα  iTaa 10 +  ii Taa 10 −−α  
-340 
-260 
-180 
-100 
-20 
60 

2.45 
3.58 
4.52 
5.28 
5.86 
6.36 

2.7357 
3.5114 
4.2871 
5.0629 
5.8386 
6.6143 

-0.28571 
0.068571 
0.23286 
0.21714 
0.021429 
-0.25429 
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Table 2 shows the residuals of the data to calculate the sum of the square of residuals as 

 
22

2222

)25429.0()021429.0(
)21714.0()23286.0()068571.0()28571.0(

−++

+++−=rS
   

         25283.0=  
The standard error of estimate  

 
2/ −

=
n
Ss r

Tα  

                 
26

25283.0
−

=  

                25141.0=  
The units of Ts /α  are same as the units of α .  How is the value of the standard error of 
estimate interpreted?  We may say that on average the difference between the observed and 
predicted values is Fμin/in/ 0.25141  .  Also, we can look at the value as follows.  About 95% 
of the observed α  values are between Ts /2 α±  of the predicted value (see Figure 2).  This 
would lead us to believe that the value of α  in the example is expected to be accurate within 

Ts /2 α± = 25141.02 ×± = Fμin/in/ 50282.0 ± . 

   
Figure 2 Plotting the linear regression line and showing the regression standard error. 
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One can also look at this criterion as finding if 95% of the scaled residuals for the model are 
in the domain [-2,2], that is 

 Scaled residual
T

ii

s
Taa

/

10

α

α −−
=  

For the example, 
  25141.0/ =Tsα  
Table 4 Residuals and scaled residuals for data. 

iT  iα  ii Taa 10 −−α  Scaled Residuals 
-340 
-260 
-180 
-100 
-20 
60 

2.45 
3.58 
4.52 
5.28 
5.86 
6.36 

-0.28571 
0.068571 
0.23286 
0.21714 
0.021429 
-0.25429 

-1.1364 
0.27275 
0.92622 
0.86369 
0.085235 
-1.0115 

and the scaled residuals are calculated in Table 4.  All the scaled residuals are in the [-2,2] 
domain. 
 
3. Calculate the coefficient of determination.   
Denoted by 2r , the coefficient of determination is another criterion to use for checking the 
adequacy of the model. 
To answer the above questions, let us start from the examination of some measures of 
discrepancies between the whole data and some key central tendency.  Look at the two 
equations given below. 

 
( )

( )∑

∑

=

=

−−=

−=

n

i
ii

n

i
iir

Taa

S

1

2
10

1

2ˆ

α

αα
       (1) 

 ( )∑
=

−=
n

i
itS

1

2αα          (2) 
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n

n

i
i∑

== 1
α

α  

For the example data 
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36.686.528.552.458.345.2 +++++
=  

         Fμin/in/ 6750.4 =  



Adequacy of Regression Model                                                                                    06.05.5 
 
 
 
 

  ( )∑
=

−=
n

i
itS
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2αα  

           222222 )6850.1()1850.1()60500.0()15500.0()0950.1()2250.2( +++−+−+−=  
                 783.10=  
 
Table 5 Difference between observed and average value. 

iT  iα  αα −i  
-340 
-260 
-180 
-100 
-20 
60 

2.45 
3.58 
4.52 
5.28 
5.86 
6.36 

-2.2250 
-1.0950 
-0.15500 
0.60500 
1.1850 
1.6850 

where rS  is the sum of the square of the residuals (residual is the difference between the 
observed value and the predicted value), and tS  is the sum of the square of the difference 
between the observed value and the average value. 
 What inferences can we make about the two equations?  Equation (2) measures the 
discrepancy between the data and the mean.  Recall that the mean of the data is a measure of 
a single point that measures the central tendency of the whole data.  Equation (2) contrasts 
with Equation (1) as Equation (1) measures the discrepancy between the vertical distance of 
the point from the regression line (another measure of central tendency).  This line obtained 
by the least squares method gives the best estimate of a line with least sum of deviation.  rS  
as calculated quantifies the spread around the regression line.  
 The objective of least squares method is to obtain a compact equation that best 
describes all the data points. The mean can also be used to describe all the data points.  The 
magnitude of the sum of squares of deviation from the mean or from the least squares line is 
therefore a good indicator of how well the mean or least squares characterizes the 
whole data.  We can liken the sum of squares deviation around the mean, tS  as the error or 
variability in y  without considering the regression variable x , while rS , the sum of squares 
deviation around the least square regression line is error or variability in y  remaining after 
the dependent variable x  has been considered. 
 The difference between these two parameters measures the error due to describing or 
characterizing the data in one form instead of the other.  A relative comparison of this 
difference ( )rt SS − , with the sum of squares deviation associated with the mean tS  describes 
a quantity called coefficient of determination, 2r  

 
t

rt

S
SS

r
−

=2           (5) 

      
783.10

25283.0783.10 −
=  

      97655.0=  
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Based on the value obtained above, we can claim that 97.7% of the original uncertainty in the 
value of α  can be explained by the straight-line regression model of 

TT 0096964.00325.6)( +=α .   
Going back to the definition of the coefficient of determination, one can see that tS  is the 
variation without any relationship of y  vs.  x , while rS  is the variation with the straight-line 
relationship. 
 The limits of the values of 2r  are between 0 and 1.  What do these limiting values of 

2r  mean?  If 02 =r , then rt SS = , which means that regressing the data to a straight line 
does nothing to explain the data any further.  If 12 =r , then 0=rS , which means that the 
straight line is passing through all the data points and is a perfect fit. 
 

Caution in the use of 2r  

a) The coefficient of determination, 2r  can be made larger (assumes no collinear points) 
by adding more terms to the model.  For instance, 1−n  terms in a regression equation 
for which n  data points are used will give an 2r  value of 1 if there are no collinear 
points. 

b) The magnitude of 2r  also depends on the range of variability of the regressor )(x  
variable.  Increase in the spread of x  increases 2r  while a decrease in the spread of x  
decreases 2r . 

c) Large regression slope will also yield artificially high 2r .  
d) The coefficient of determination, 2r  does not measure the appropriateness of the 

linear model.  2r  may be large for nonlinearly related x  and y values. 
e) Large coefficient of determination 2r  value does not necessarily imply the regression 

will predict accurately. 
f) The coefficient of determination , 2r does not measure the magnitude of the regression 

slope. 
g) These statements above imply that one should not choose a regression model solely 

based on consideration of 2r . 
 
4. Find if the model meets the assumptions of random errors.   
These assumptions include that the residuals are negative as well as positive to give a mean 
of zero, the variation of the residuals as a function of the independent variable is random, the 
residuals follow a normal distribution, and that there is no auto correlation between the data 
points. 
 To illustrate this better, we have an extended data set for the example that we took.  
Instead of 6 data points, this set has 22 data points (Table 6).  Drawing conclusions from 
small or large data sets for checking assumption of random error is not recommended. 
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   Table 6 Instantaneous thermal expansion coefficient as a function of temperature. 

Temperature Instantaneous 
Thermal Expansion 

F°  Fμin/in/°  
80 6.47 
60 6.36 
40 6.24 
20 6.12 
0 6.00 
-20 5.86 
-40 5.72 
-60 5.58 
-80 5.43 
-100 5.28 
-120 5.09 
-140 4.91 
-160 4.72 
-180 4.52 
-200 4.30 
-220 4.08 
-240 3.83 
-260 3.58 
-280 3.33 
-300 3.07 
-320 2.76 
-340 2.45 
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Figure 3 Plot of thermal expansion coefficient vs. temperature data points and regression line 
for more data points.   
Regressing the data from Table 2 to the straight line regression line 
 TaaT 10)( +=α  
and following the procedure for conducting linear regression as given in Chapter 06.03, we 
get (Figure 3) 
 T0093868.00248.6 +=α  
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Figure 4 Plot of residuals. 
 Figure 4 shows the residuals for the example as a function of temperature.  Although 
the residuals seem to average to zero, but within a range, they do not exhibit this zero mean.  
For an initial value of T , the averages are below zero.  For the middle values of T , the 
averages are below zero, and again for the final values of T , the averages are below zero.  
This may be considered a violation of the model assumption. 
  Figure 4 also shows the residuals for the example are following a nonlinear variance.  
This is a clear violation of the model assumption of constant variance. 
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  Figure 5 Histogram of residuals. 
 Figure 5 shows the histogram of the residuals.  Clearly, the histogram is not showing 
a normal distribution, and hence violates the model assumption of normality.   
 To check that there is no autocorrelation between observed values, the following rule 
of thumb can be used.  If n  is the number of data points, and q  is the number of times the 
sign of the residual changes, then if 

 1
2

11
2

)1(
−+

−
≤≤−−

− nnqnn ,  

you most likely do not have an autocorrelation.  For the example, 22=n , then 

 122
2

122122
2

)122(
−+

−
≤≤−−

− q  

 083.159174.5 ≤≤ q  
is not satisfied as 2=q .  So this model assumption is violated. 
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Chapter 07.01 
Primer on Integration 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. define an integral, 
2. use Riemann’s sum to approximately calculate integrals, 
3. use Riemann’s sum and its limit to find the exact expression of integrals, and 
4. find exact integrals of different functions such as polynomials, trigonometric 

function and transcendental functions. 
 
What is integration? 
The dictionary definition of integration is combining parts so that they work together or form 
a whole.  Mathematically, integration stands for finding the area under a curve from one 
point to another. It is represented by 

 ∫
b

a

dxxf )(   

where the symbol ∫ is an integral sign, and a  and b  are the lower and upper limits of 

integration, respectively, the function f  is the integrand of the integral, and x  is the variable 
of integration.  Figure 1 represents a graphical demonstration of the concept. 
 
Riemann Sum 

 Let f  be defined on the closed interval ],[ ba , and let ∆  be an arbitrary partition of 
],[ ba  such as: bxxxxxa nn =<<<<<= −1210 ..... , where ix∆  is the length of the thi  

subinterval (Figure 2). 
 If ic  is any point in the thi  subinterval, then the sum 
 

∑
=

− ≤≤∆
n

i
iiiii xcxxcf

1
1,)(
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is called a Riemann sum of the function f  for the partition ∆  on the interval ],[ ba .  For a 
given partition ∆ , the length of the longest subinterval is called the norm of the partition. It is 
denoted by ∆  (the norm of ∆ ). The following limit is used to define the definite integral. 
 

 

Figure 1  The definite integral as the area of a region under the curve, ∫=
b

a

dxxfArea )( . 

If ic  is any point in the thi  subinterval, then the sum 

 iiii

n

i
i xcxxcf ≤≤∆ −

=
∑ 1

1
,)(  

 
Figure 2   Division of interval into n  segments. 

 
is called a Riemann sum of the function f  for the partition ∆  on the interval ],[ ba .  For a 
given partition ∆ , the length of the longest subinterval is called the norm of the partition. It is 
denoted by ∆  (the norm of ∆ ). The following limit is used to define the definite integral. 

∑
=

→∆
=∆

n

i
ii Ixcf

10
)(lim

 
 

   x0         x1      ...                       xi-1                 xi          …                         xn-1        xn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∆xi 

x 

y 

y = f(x) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 
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This limit exists if and only if for any positive number ε , there exists a positive number δ  
such that for every partition ∆  of ],[ ba  with δ<∆ , it follows that 

ε<∆−∑
=

n

i
ii xcfI

1
)(

 
for any choice of ic in the thi subinterval of∆ . 
 If the limit of a Riemann sum of f  exists, then the function f  is said to be integrable 
over ],[ ba  and the Riemann sum of f  on ],[ ba  approaches the number I . 

∑
=

→∆
=∆

n

i
ii Ixcf

10
)(lim

 
where 

 
∫=
b

a

dxxfI )(
 

Example 1 

Find the area of the region between the parabola 2xy =  and the x -axis on the interval 
]5.4,0[ . Use Riemann’s sum with four partitions.  

 
Solution 
We evaluate the integral for the area as a limit of Riemann sums.  We sketch the region 
(Figure 3), and partition ]5.4,0[  into four subintervals of length 

 125.1
4

05.4
=

−
=∆x . 

 

 
Figure 3  Graph of the function 2xy = . 

 
The points of partition are 

5.4,375.3,25.2,125.1,0 43210 ===== xxxxx  

0 

5 

10 

15 

20 

25 

0 1.125 2.25 3.375 4.5 
x 

y 
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Let’s choose ic ’s to be right hand endpoint of its subinterval. Thus,   
5.4,375.3,25.2,125.1 44332211 ======== xcxcxcxc  

The rectangles defined by these choices have the following areas: 
4238.1)125.1()125.1()125.1()125.1()( 2

1 ==×=∆ fxcf  
6953.5)125.1()25.2()125.1()25.2()( 2

2 ==×=∆ fxcf  
814.12)125.1()375.3()125.1()375.3()( 2

3 ==×=∆ fxcf   
781.22)125.1()5.4()125.1()5.4()( 2

4 ==×=∆ fxcf  
 The sum of the areas then is 

∑∫
=

∆≈
4

1

5.4

0

2 ,)(
i

i xcfdxx  

           22.78112.8145.69531.4238 +++=  
             = 42.715 

How does this compare with the exact value of the integral dxx∫
5.4

0

2 ? 

Example 2 

Find the exact area of the region between the parabola 2xy =  and the axis−x  on the 
interval ],0[ b .  Use Riemann’s sum.  
Solution 

Note that in Example 1 for 2xy =  that  
 ( ) ( )32 xixcf i ∆=∆  

Thus, the sum of these areas, if the interval is divided into n equal segments is 

∑
=

∆=
n

i
in xcfS

1
)(  

∑
=

∆=
n

i
xi

1

32 )(  

∑
=

∆=
n

i
ix

1

23)(  

Since 

n
bx =∆ , and 

6
)12)(1(

1

2 ++
=∑

=

nnni
n

i
 

then 

6
)12)(1(

3

3 ++
=

nnn
n
bSn  

      = 2

23 122
6 n

nnnb +++  
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 ++= 2

3 132
6 nn
b  

The definition of a definite integral can now be used 
 

∫ ∑
=

→∆
∆=

b

a

n

i
ix

xcfdxxf
10

)(lim)(
 

 
To find the area under the parabola from 0=x  to bx = , we have 

 xcfdxx
n

i
i

b

∆= ∑∫
=

→∆ 10||
0

2 )(lim  

  nn
S

→∞
= lim  

  





 ++=

∞→ 2

3 132
6

lim
nn

b
n

 

  ( )002
6

3

++=
b  

  
3

3b
=  

For the value of 5.4=b  as given in Example 1,  

3
5.4 35.4

0

2 =∫ dxx  

 = 30.375 
 

The Mean Value Theorem for Integrals 
The area of a region under a curve is usually greater than the area of an inscribed rectangle 
and less than the area of a circumscribed rectangle. The mean value theorem for integrals 
states that somewhere between these two rectangles, there exists a rectangle whose area is 
exactly equal to the area of the region under the curve, as shown in Figure 4.  Another 
variation states that if a function f  is continuous between a  and b , then there is at least one 
point in ],[ ba  where the function equals the average value of the function f over ],[ ba . 
 
Theorem: f If the function  is continuous on the closed interval ],[ ba , then there exists a 
number c  in ],[ ba  such that: 

∫−
=

b

a

dxxf
ab

cf )(1)(  

 
Example 3 

Graph the function 2)1()( −= xxf , and find its average value over the interval ]3,0[ . At what 
point in the given interval does the function assume its average value? 
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      Figure 4   Mean value rectangle. 

 
 
 
Solution 

∫−
=

b

a

dxxf
ab

fAverage )(1)(
 

                    
dxx∫ −

−
=

3

0

2)1(
03

1

 

         
dxxx )12(

3
1 3

0

2 +−= ∫
 

                   








−






 +−×= 03927

3
1

3
1

 
                   1=  

The average value of the function f  over the interval ]3,0[  is 1. Thus, the function assumes 
its average value at 

1)( =cf  
1)1( 2 =−c  

2,0=c  
The connection between integrals and area can be exploited in two ways.  When a formula 
for the area of the region between the x -axis and the graph of a continuous function is 
known, it can be used to evaluate the integral of the function.  However, if the area of region 
is not known, the integral of the function can be used to define and calculate the area. Table 1 
lists a number of standard indefinite integral forms. 
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Figure 5  The function 2)1()( −= xxf . 

 
Example 4 

Find the area of the region between the circle 122 =+ yx  and the x -axis on the interval 
]1,0[  (the shaded region) in two different ways. 

Solution 

 
Figure 6   Graph of the function 122 =+ yx . 

 
The first and easy way to solve this problem is by recognizing that it is a quarter circle.  
Hence the area of the shaded area is 

2

4
1 rA π=  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 1 2 3 4 5 
x 

y 

0 1 
x 

1 

y 



07.01.8                                                        Chapter 07.01 
 

    2)1(
4
1π=  

    
4
π

=  

The second way is to use the integrals and the trigonometric functions. First, let’s simplify 
the function 122 =+ yx .  

2

22

22

1

1
1

xy

xy
yx

−=

−=

=+

 
 
The area of the shaded region is the equal to 

dxxA ∫ −=
1

0

21  

We set θsin=x , θθ ddx cos=  

 dxxA ∫ −=
1

0

21  

    ( ) θθθ
π

dcossin1
2

0

2∫ −=  

     

    ( ) θθθ
π

dcoscos
2

0

2∫=  

    ∫=
2

0

2cos
π

θθ d  

By using the following formula  

 
2

2cos1cos2 θθ +
= ,  

we have 

∫
+

=
2

0 2
2cos1π

θθ dA  

        ∫ 





 +=

2

0 2
2cos

2
1π

θθ d  

                
2

04
2sin

2
1 πθθ 



 +=  

                ( )000
4

+−





 +=
π  

                
4
π

=  
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The following are some more examples of exact integration.  You can use the brief table of 
integrals given in Table 1. 
 
Table 1   A brief table of integrals 
 

 
Cxdx +=∫  

 

 
Cxdxx +−=∫ cossin  

 
Cdxxfadxxfa += ∫∫ )()(  

 

 
Cxdxx +=∫ sincos  

 
[ ] ∫ ∫∫ +±=± Cdxxvdxxudxxvxu )()()()(

 
 

 
CxCxdxx +=+−=∫ seclncoslntan  

 

C
n
xdxx

n
n +

+
=∫

+

1

1

 
 

 

Caxax
a

dxax ++=∫ )tan()sec(ln1)sec(
 

 
Cduvvudvu +−= ∫∫  

 

 
CxCxdxx +=+−=∫ sinlncsclncot  

 

Cbax
abax

dx
++=

+∫ ln1
 

 

 

Cax
a

dxax +=∫ )tan(1sec2  

 

C
a

adxa
x

x +=∫ ln  
 

 
Cxdxxx +=∫ )sec()tan()sec(

 

 

C
a

edxe
ax

ax +=∫  

 

 
Cxdxxx +−=∫ )csc()cot()csc(

 

 
 
Example 5 
Evaluate the following integral  

dxxe x∫ −
1

0

2

2  
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Solution 

Let  xdxduxu 2,2 −=−=  
At  0)0(,0 2 =−== ux  
At 1)1(,1 2 −=−== ux  

)2)((2
1

0

1

0

22

dxxedxxe xx ∫∫ −−= −−  

      ))((
1

0

dueu∫
−

−=  

      [ ] 1
0
−

−= ue  
      )( 01 ee −−−= −  
      =0.6321 
 

Example 6 
Evaluate 

dx
x
x

∫
+4/

0
2cos

sin1π

 

Solution 

∫∫ 





 +=

+ 4/

0
22

4/

0
2 cos

sin
cos

1
cos

sin1 ππ

dx
x

x
x

dx
x
x  

                       ( )∫ ×+=
4/

0

2 tansecsec
π

dxxxx  

                                  ( ) ( )( )∫∫ +=
4/

0

4/

0

2 tansecsec
ππ

dxxxdxx  

                                  [ ] [ ] 4
0

4
0 sectan ππ xx +=  

                                  ( ) ( )1201 −+−=  
                                  2=  

 
 

Example 7 

Evaluate ∫ dxxx 2sec  
Solution 
We use the formula  
 ∫ ∫−= vduuvudv  

Let dxduxu == , , and xvdxxdv tan,sec2 ==  
So the new integral is 
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∫∫ −= xdxxxxdxx tantansec2  

                   Cxxx ++= coslntan  
Example 8 
Evaluate 

∫
2

1

ln xdxx  

Solution 

Let dx
x

duxu 1,ln == and 
2

,
2xvxdxdv ==  

Using the formula ∫ ∫−= vduuvudv , the new integral is 

( )( ) 














−








×= ∫∫ dx

x
xxxdxxx 1
22

lnln
2

1

22

1

22

1

 

                    dxxxx ∫−







×=

2

1

2

1

2

22
ln  

                    
2

1

22

1

2

42
ln 








−








×=

xxx  

                    















−








−
















×−








×=

4
1

4
2

2
11ln

2
22ln

2222

 

                    ( ) 













−






−














−=

4
1

4
41ln

2
12ln2  

                    ( ) 



 −−














 ×−=

4
110

2
12ln2  

                    6362.0=  
 
 
Example 9 
Evaluate 

∫ +

1

0
22 )4(

5 dx
x
x  

Solution 

We use the formula ∫ ∫=′
b

a

bg

ag

duufdxxgxgf
)(

)(

)()())(( , by substituting )(xgu = , dxxgdu )(′=  

then integrating from )(ag  to )(bg . 
Let 
 24)( xxgu +== ,  



07.01.12                                                        Chapter 07.01 
 

so 
 5)1(,4)0( == gg , and  
 ( )dxxdu 2=  
The new integral is  

dxx
x

dx
x
x )2(

2
5

)4(
1

)4(
5 1

0
22

1

0
22 ××

+
=

+ ∫∫  

                      
)

4
1()

5
1(

2
5

1
2
5

1
2
5

5

4

5

4
2





 −−−=





−=

= ∫

u

du
u

 
           

20
1

2
5
×=  

           = 0.125    
 
Example 10 
Evaluate 

∫ −
4

0

12 dxx  

Solution 

First, let’s analyze the expression 12 −x . 

)12(12 −−=− xx , 
2
1

<x        

            )12( −= x , 
2
1

≥x  

∫ ∫∫ −+−−=−
4

0

4

2/1

2/1

0

)12()12(12 dxxdxxdxx
 

                 

[ ] [ ]
( )

512
2
1

4
14160

2
1

4
1

4
21

221
0

2

.

xxxx

=















 −−−+








−






 +−=

−++−=

 
 
Example 11 
Evaluate  
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∫
−

∞− −

2

2 1
2 dx

x
 

Solution 

( ) ( )∫ ∫
−

∞−

−

∞− +×−
=

−

2 2

2 11
2

1
2 dx

xx
dx

x
 

                   ( ) ( )
( ) ( )∫

−

∞− +×−
−−+

=
2

11
11 dx

xx
xx  

                    ( ) ( ) ( ) ( )∫
−

∞− +×−
−

−
+×−

+
=

2

11
1

11
1 dx

xx
x

xx
x  

                    ∫∫
−

∞−

−

∞− +
−

−
=

22

1
1

1
1 dx

x
dx

x
 

                 [ ] [ ] 22 1lnlim1lnlim −

−∞→

−

−∞→
+−−=

bbbb
xx  

                 
b

b x
x

21
1lnlim

−
−∞→ 








+
−

=  

                 







+
−

−
−
−

=
−∞→ 1

1ln
1
3lnlim

b
b

b
 

                 ( ) 







+
−

−=
−∞→ 1

1limln3ln
b
b

b
 

                 ( ) ( )1ln3ln −=  
                 ( )3ln=  
                 0986.1=  
 

Example 12 

Graph the function 2/32 )2(
3
1

+= xy , and find the length of the curve from 0=x  to 3=x .  

Solution 
We use the equation  

∫ +=
b

a

dx
dx
dyL 2)(1  

We have:  
2/32 )2(

3
1

+= xy   

So,  

( ) ( )xx
dx
dy 22

2
3

3
1 12/32 ×+×






×






=

−  

      22 += xx  
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( )∫ ++=
3

0

2
2 21 dxxxL  

 

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6

x

y

 
 Figure 7   Graph of the function 2/32 )2(

3
1

+= xy  

    12

3

)1(

)1(

21

)2(1

3

0

3

3

0

2

3

0

22

3

0

24

3

0

22

=









+=

+=

+=

++=

++=

∫

∫

∫

∫

xx

dxx

dxx

dxxx

dxxx

 
 
 
Example 13 
Find the area of the shaded region given in Figure 8. 
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Figure 8   Graph of the function x2cos . 

 
Solution 
For the sketch given,  

 ππ
== ba ,

2
, and  

 xxxgxf 22 sincos1)()( =−=−  
 

( )∫=
π

π 2

2sin dxxA  

    ∫
−

=
π

π 2 2
2cos1 dxx  

    ∫ 



 −=

π

π 2 2
2cos

2
1 dxx  

    
π

π 24
2sin

2 



 −=

xx  

    ( )












































−−





 −=

4
2

2sin

44
2sin

2

π
πππ  

    













 −−






 −= 0

4
0

2
ππ  

     

0 

0.2 

0.4 

0.6 

0.8 

1 

0 
2
π  

 

π  
x 

y 

xxg 2cos)( =  

1)( =xf  
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4
π

=  

 
 
Example 14 
Find the volume of the solid generated by revolving the shaded region in Figure 9 about the 
y-axis. 

 
   Figure 9   Volume generated by revolving shaded region. 

 
Solution 

We use the formula dyradiusV
b

a
∫= 2)(π  

Let 

 dyduyu
4

,
4

ππ
== .  

Therefore, at 0,0 == uy  

     
4

,1 π
== uy  

( )[ ]∫=
1

0

2 dyyRV π  

   ∫ 













=

1

0

2

4
tan dyyππ  

   ∫ 













×=

1

0

2

44
tan4 dyy ππ

π
π  

yx )4/tan(π=  

y = 1 

x 

y
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   ( )∫=
4

0

2tan4
π

duu   (Choosing yu
4
π

= ) 

   ( )∫ +−=
4

0

2sec14
π

duu  

   [ ] 4
0tan4 πuu +−=  

   ( )







+−






 +−= 0tan0

4
tan

4
4 ππ  

   ( )







+−






 +−= 001

4
4 π  

   8584.0=  
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Chapter 07.02  
Trapezoidal Rule of Integration 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. derive the trapezoidal rule of integration, 
2. use the trapezoidal rule of integration to solve problems, 
3. derive the multiple-segment trapezoidal rule of integration, 
4. use the multiple-segment trapezoidal rule of integration to solve problems, and 
5. derive the formula for the true error in the multiple-segment trapezoidal rule of 

integration. 
 

 
What is integration? 
Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about some of these applications in 
Chapters 07.00A-07.00G.   
Sometimes, the evaluation of expressions involving these integrals can become daunting, if 
not indeterminate.  For this reason, a wide variety of numerical methods has been developed 
to simplify the integral.   
Here, we will discuss the trapezoidal rule of approximating integrals of the form 

( )∫=
b

a

dxxfI  

where  
  )(xf  is called the integrand, 
  =a  lower limit of integration 
  =b  upper limit of integration 
 
What is the trapezoidal rule? 
The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the 
integrand by an thn  order polynomial, then the integral of the function is approximated by 
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the integral of that thn  order polynomial.  Integrating polynomials is simple and is based on 
the calculus formula. 

 
Figure 1 Integration of a function 

 
 

  1,
1

11

−≠







+
−

=
++

∫ n
n

abdxx
nnb

a

n                                                                           (1) 

So if we want to approximate the integral 

∫=
b

a

dxxfI )(                                                                                                                 (2) 

to find the value of the above integral, one assumes 
)()( xfxf n≈                                                                                                               (3) 

where 
n

n
n

nn xaxaxaaxf ++++= −
−

1
110 ...)( .                                                              (4) 

where )(xfn  is a thn  order polynomial.  The trapezoidal rule assumes 1=n , that is, 
approximating the integral by a linear polynomial (straight line), 

∫∫ ≈
b

a

b

a

dxxfdxxf )()( 1

 
Derivation of the Trapezoidal Rule 

Method 1: Derived from Calculus 

∫∫ ≈
b

a

b

a

dxxfdxxf )()( 1  

     ∫ +=
b

a

dxxaa )( 10  

                           






 −
+−=

2
)(

22

10
abaaba                                                                  (5) 
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But what is 0a  and 1a ?  Now if one chooses, ))(,( afa  and ))(,( bfb  as the two points to 
approximate )(xf  by a straight line from a  to b , 
 

aaaafaf 101 )()( +==                                                                                       (6) 
baabfbf 101 )()( +==                                                                                       (7) 

 
Solving the above two equations for 1a  and 0a , 

ab
afbfa

−
−

=
)()(

1  

ab
abfbafa

−
−

=
)()(

0                                                                                      (8a) 

Hence from Equation (5), 

2
)()()()()()(

22 ab
ab

afbfab
ab

abfbafdxxf
b

a

−
−
−

+−
−
−

≈∫               (8b) 

                           



 +

−=
2

)()()( bfafab                                                                           (9)  

 
Method 2: Also Derived from Calculus 

)(1 xf  can also be approximated by using Newton’s divided difference polynomial as 

)()()()()(1 ax
ab

afbfafxf −
−
−

+=                                                                         (10) 

Hence 

∫∫ ≈
b

a

b

a

dxxfdxxf )()( 1  

     ∫ 



 −

−
−

+=
b

a

dxax
ab

afbfaf )()()()(  

     
b

a

axx
ab

afbfxaf 















−

−
−

+=
2

)()()(
2

 

                           







+−−








−
−

+−= 2
22

22
)()()()( aaabb

ab
afbfaafbaf  

     







+−








−
−

+−=
22

)()()()(
22 aabb

ab
afbfaafbaf  

     ( )2

2
1)()()()( ab

ab
afbfaafbaf −







−
−

+−=  

     ( )( )abafbfaafbaf −−+−= )()(
2
1)()(  
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     aafbafabfbbfaafbaf )(
2
1)(

2
1)(

2
1)(

2
1)()( +−−+−=  

     abfbbfaafbaf )(
2
1)(

2
1)(

2
1)(

2
1

−+−=  

                           



 +

−=
2

)()()( bfafab                                                                         (11) 

This gives the same result as Equation (10) because they are just different forms of writing 
the same polynomial. 
 
Method 3: Derived from Geometry 
The trapezoidal rule can also be derived from geometry. Look at Figure 2.  The area under 
the curve )(1 xf  is the area of a trapezoid.  The integral 

trapezoidofArea)( ≈∫
b

a

dxxf  

 
2
1

= (Sum of length of parallel sides)(Perpendicular distance between parallel sides) 

 ( ) )()()(
2
1 abafbf −+=  

 



 +

−=
2

)()()( bfafab                                                                                     (12) 

 

 

Figure 2 Geometric representation of trapezoidal rule. 
 
Method 4: Derived from Method of Coefficients 
The trapezoidal rule can also be derived by the method of coefficients.  The formula 

)(
2

)(
2

)( bfabafabdxxf
b

a

−
+

−
≈∫                                                                           (13) 

                           ∑
=

=
2

1
)(

i
ii xfc  

where 

21
abc −

=
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22
abc −

=
 

ax =1   
bx =2   

 
Figure 3 Area by method of coefficients. 

 
The interpretation is that )(xf  is evaluated at points a  and b , and each function evaluation 

is given a weight of 
2

ab − .  Geometrically, Equation (12) is looked at as the area of a 

trapezoid, while Equation (13) is viewed as the sum of the area of two rectangles, as shown 
in Figure 3.  How can one derive the trapezoidal rule by the method of coefficients?   
 
Assume 

)()()( 21 bfcafcdxxf
b

a

+=∫                                                                                     (14) 

Let the right hand side be an exact expression for integrals of ∫
b

a

dx1  and ∫
b

a

xdx , that is, the 

formula will then also be exact for linear combinations of 1)( =xf  and xxf =)( , that is, for 
)()1()( 10 xaaxf += . 

211 ccabdx
b

a

+=−=∫                                                                                      (15) 

bcacabxdx
b

a
21

22

2
+=

−
=∫                                                                                     (16) 

Solving the above two equations gives 

21
abc −

=  

22
abc −

=                                                                                                             (17) 

Hence 
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)(
2

)(
2

)( bfabafabdxxf
b

a

−
+

−
≈∫                                                                         (18) 

 
Method 5: Another approach on the Method of Coefficients 
The trapezoidal rule can also be derived by the method of coefficients by another approach 

)(
2

)(
2

)( bfabafabdxxf
b

a

−
+

−
≈∫  

Assume 

)()()( 21 bfcafcdxxf
b

a

+=∫                                                                                     (19) 

Let the right hand side be exact for integrals of the form 

( )∫ +
b

a

dxxaa 10  

So 

( )
b

a

b

a

xaxadxxaa 







+=+∫ 2

2

1010  

             ( ) 






 −
+−=

2

22

10
abaaba                                                             (20) 

But we want 

( ) )()( 2110 bfcafcdxxaa
b

a

+=+∫                                                                         (21) 

to give the same result as Equation (20) for xaaxf 10)( += . 

( ) ( ) ( )baacaaacdxxaa
b

a
10210110 +++=+∫  

             ( ) ( )bcacacca 211210 +++=                                                             (22) 
Hence from Equations (20) and (22), 

( ) ( ) ( )bcacaccaabaaba 211210

22

10 2
+++=







 −
+−  

Since 0a  and 1a  are arbitrary for a general straight line 
abcc −=+ 21  

2

22

21
abbcac −

=+                                                                                                 (23) 

Again, solving the above two equations (23) gives 

21
abc −

=  

22
abc −

=                                                                                                             (24) 
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Therefore 

)()()( 21 bfcafcdxxf
b

a

+≈∫  

                           )(
2

)(
2

bfabafab −
+

−
=                                                                           (25) 

 
Example 1 

The vertical distance covered by a rocket from 8=t  to 30=t  seconds is given by 

∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

a) Use the single segment trapezoidal rule to find the distance covered for 8=t  to 
30=t seconds. 

b) Find the true error, tE  for part (a). 
c) Find the absolute relative true error for part (a). 

Solution 

a) 



 +

−≈
2

)()()( bfafabI , where 

8=a   
30=b   

t
t

tf 8.9
2100140000

140000ln2000)( −





−
=  

)8(8.9
)8(2100140000

140000ln2000)8( −







−

=f  

                     27.177=  m/s 

)30(8.9
)30(2100140000

140000ln2000)30( −







−

=f  

                      67.901=  m/s 





 +

−≈
2

67.90127.177)830(I  

               11868=  m 
 
b) The exact value of the above integral is 

 ∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

    11061=  m 
so the true error is 

=tE  True Value – Approximate Value 
      1186811061−=  
      807−=  m 
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c) The absolute relative true error, t∈ , would then be 

100
Value True
Error True

×=∈t   

       100
11061

1186811061
×

−
=  

       %2958.7=  
 
Multiple-Segment Trapezoidal Rule 
In Example 1, the true error using a single segment trapezoidal rule was large.  We can 
divide the interval ]30,8[  into ]19,8[  and ]30,19[  intervals and apply the trapezoidal rule over 
each segment. 

t
t

tf 8.9
2100140000

140000ln2000)( −







−
=  

∫∫∫ +=
30

19

19

8

30

8

)()()( dttfdttfdttf  

              



 +

−+



 +

−≈
2

)30()19()1930(
2

)19()8()819( ffff  

                 27.177)8( =f  m/s 

   75.484)19(8.9
)19(2100140000

140000ln2000)19( =−







−

=f m/s 

    67.901)30( =f  m/s 
Hence 





 +

−+



 +

−≈∫ 2
67.90175.484)1930(

2
75.48427.177)819()(

30

8

dttf  

    11266=  m 
The true error, tE  is 

1126611061−=tE  
       205−= m 
The true error now is reduced from 807 m to 205 m.  Extending this procedure to dividing 

],[ ba  into n  equal segments and applying the trapezoidal rule over each segment, the sum of 
the results obtained for each segment is the approximate value of the integral. 
Divide )( ab −  into n  equal segments as shown in Figure 4.  Then the width of each segment 
is 

n
abh −

=                                                                                                             (26) 

The integral I  can be broken into h  integrals as 

∫=
b

a

dxxfI )(   
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       ∫∫∫∫
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ha

ha

ha

a

dxxfdxxfdxxfdxxf
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)1(

)2(

2

)()(...)()(                                     (27) 

 

 
Figure 4  Multiple ( 4=n ) segment trapezoidal rule 

 
Applying trapezoidal rule Equation (27) on each segment gives 
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Example 2 

The vertical distance covered by a rocket from 8=t  to 30=t  seconds is given by 

∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

a) Use the two-segment trapezoidal rule to find the distance covered from 8=t  to 
30=t  seconds. 

b) Find the true error, tE  for part (a). 
c) Find the absolute relative true error for part (a). 

Solution 
a) The solution using 2-segment Trapezoidal rule is 









+









++
−

≈ ∑
−

=

)()(2)(
2

1

1
bfihafaf

n
abI

n

i
 

2=n  
8=a   
30=b  

n
abh −

=  

               
2

830 −
=  

               11=   

       







+









++
−

≈ ∑
−

=

)30()118(2)8(
)2(2
830 12

1
fiffI

i
 

                [ ])30()19(2)8(
4
22 fff ++=  

                [ ]67.901)75.484(227.177
4
22

++=  

                11266=  m 
 
b) The exact value of the above integral is 

∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

       11061=  m 
so the true error is 

−= Value TruetE Approximate Value 
       1126611061−=  

      m205−=  
 
c) The absolute relative true error, t∈ , would then be 
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100
Value True
Error True

×=∈t   

       100
11061

1126611061
×

−
=  

       %8537.1=  
 
         Table 1 Values obtained using multiple-segment trapezoidal rule for 

∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

  

n  Approximate 
Value tE  %t∈  %a∈  

1 11868 -807 7.296 --- 
2 11266 -205 1.853 5.343 
3 11153 -91.4 0.8265 1.019 
4 11113 -51.5 0.4655 0.3594 
5 11094 -33.0 0.2981 0.1669 
6 11084 -22.9 0.2070 0.09082 
7 11078 -16.8 0.1521 0.05482 
8 11074 -12.9 0.1165 0.03560 

 
Example 3 
Use the multiple-segment trapezoidal rule to find the area under the curve 

xe
xxf

+
=

1
300)(  

from 0=x  to 10=x . 
Solution 
Using two segments, we get 

5
2

010
=

−
=h  

0
1

)0(300)0( 0 =
+

=
e

f  

039.10
1

)5(300)5( 5 =
+

=
e

f  
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1

)10(300)10( 10 =
+

=
e

f  
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−

≈ ∑
−

=

)()(2)(
2

1

1
bfihafaf

n
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i
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−

= ∑
−

=

)10()50(2)0(
)2(2
010 12

1
fff

i
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    [ ])10()5(2)0(
4

10 fff ++=  

     [ ]136.0)039.10(20
4

10
++=    537.50=  

So what is the true value of this integral? 

59.246
1
30010

0

=
+∫ dx

e
x
x  

Making the absolute relative true error 

100
59.246

535.5059.246
×

−
=∈t  

       %506.79=  
Why is the true value so far away from the approximate values?  Just take a look at Figure 5.  
As you can see, the area under the “trapezoids” (yeah, they really look like triangles now) 
covers a small portion of the area under the curve.  As we add more segments, the 
approximated value quickly approaches the true value. 

 
Figure 5  2-segment trapezoidal rule approximation. 

 

Table 2 Values obtained using multiple-segment trapezoidal rule for ∫ +

10

0 1
300 dx

e
x
x . 

n  Approximate  
Value tE  t∈  

1 0.681 245.91 99.724% 

2 50.535 196.05 79.505% 

4 170.61 75.978 30.812% 

8 227.04 19.546 7.927% 
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16 241.70 4.887 1.982% 

32 245.37 1.222 0.495% 

64 246.28 0.305 0.124% 
 
Example 4 
Use multiple-segment trapezoidal rule to find 

∫=
2

0

1 dx
x

I  

Solution 

We cannot use the trapezoidal rule for this integral, as the value of the integrand at 0=x  is 
infinite.  However, it is known that a discontinuity in a curve will not change the area under 
it.  We can assume any value for the function at 0=x .  The algorithm to define the function 
so that we can use the multiple-segment trapezoidal rule is given below. 
  
 Function )(xf  
 If 0=x  Then 0=f  
 If 0≠x  Then )5.0(^ −= xf  
 End Function 
 
Basically, we are just assigning the function a value of zero at 0=x .  Everywhere else, the 
function is continuous.  This means the true value of our integral will be just that—true.  
Let’s see what happens using the multiple-segment trapezoidal rule. 
Using two segments, we get 

1
2

02
=

−
=h  

0)0( =f  

1
1

1)1( ==f  

70711.0
2

1)2( ==f  
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)()(2)(
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= ∑
−

=

)2()10(2)0(
)2(2
02 12

1
fff

i
 

     [ ])2()1(2)0(
4
2 fff ++=  

     [ ]70711.0)1(20
4
2

++=  

     3536.1=  
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So what is the true value of this integral? 

8284.212

0

=∫ dx
x

 

Thus making the absolute relative true error 

100
8284.2

3536.18284.2
×

−
=∈t  

       %145.52=  

 Table 3 Values obtained using multiple-segment trapezoidal rule for ∫
2

0

1 dx
x

. 

n  Approximate  
Value tE  t∈  

2 1.354 1.474 52.14% 
4 1.792 1.036 36.64% 
8 2.097 0.731 25.85% 
16 2.312 0.516 18.26% 
32 2.463 0.365 12.91% 
64 2.570 0.258 9.128% 
128 2.646 0.182 6.454% 
256 2.699 0.129 4.564% 
512 2.737 0.091 3.227% 
1024 2.764 0.064 2.282% 
2048 2.783 0.045 1.613% 
4096 2.796 0.032 1.141% 

 
Error in Multiple-segment Trapezoidal Rule 
The true error for a single segment Trapezoidal rule is given by 

bafabEt <<
−

−= ζζ ),("
12

)( 3

 

Where ζ  is some point in [ ]ba, . 
What is the error then in the multiple-segment trapezoidal rule?  It will be simply the sum of 
the errors from each segment, where the error in each segment is that of the single segment 
trapezoidal rule.  The error in each segment is 

[ ] haafahaE +<<
−+

−= 11

3

1 ),("
12

)( ζζ  

                 )("
12 1

3

ζfh
−=  

[ ] hahafhahaE 2),("
12

)()2(
22

3

2 +<<+
+−+

−= ζζ  

     )("
12 2

3

ζfh
−=  
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Hence the total error in the multiple-segment trapezoidal rule is 
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The term 
n

f
n

i
i∑

=1
)(" ζ

 is an approximate average value of the second 

derivative bxaxf <<),(" .   
Hence 
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In Table 4, the approximate value of the integral 
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is given as a function of the number of segments.  You can visualize that as the number of 
segments are doubled, the true error gets approximately quartered. 
 
Table 4 Values obtained using multiple-segment trapezoidal rule for 

∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x . 

 

n  Approximate 
Value tE  %t∈  %a∈  

2 11266 -205 1.853 5.343 
4 11113 -52 0.4701 0.3594 
8 11074 -13 0.1175 0.03560 
16 11065 -4 0.03616 0.00401 

 
For example, for the 2-segment trapezoidal rule, the true error is -205, and a quarter of that 
error is -51.25.  That is close to the true error of -48 for the 4-segment trapezoidal rule.    
 
Can you answer the question why is the true error not exactly -51.25? How does this 
information help us in numerical integration?  You will find out that this forms the basis of 
Romberg integration based on the trapezoidal rule, where we use the argument that true error 
gets approximately quartered when the number of segments is doubled.  Romberg integration 
based on the trapezoidal rule is computationally more efficient than using the trapezoidal rule 
by itself in developing an automatic integration scheme. 
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Chapter 07.03 
 
Simpson’s 1/3 Rule of Integration 
 
 
 
 
 
After reading this chapter, you should be able to 

1. derive the formula for Simpson’s 1/3 rule of integration, 
2. use Simpson’s 1/3 rule it to solve integrals, 
3. develop the formula for multiple-segment Simpson’s 1/3 rule of integration, 
4. use multiple-segment Simpson’s 1/3 rule of integration to solve integrals, and 
5. derive the true error formula for multiple-segment Simpson’s 1/3 rule. 

 
What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about some of these applications in 
Chapters 07.00A-07.00G.   
Sometimes, the evaluation of expressions involving these integrals can become daunting, if 
not indeterminate.  For this reason, a wide variety of numerical methods has been developed 
to simplify the integral.  Here, we will discuss Simpson’s 1/3 rule of integral approximation, 
which improves upon the accuracy of the trapezoidal rule. 
Here, we will discuss the Simpson’s 1/3 rule of approximating integrals of the form 

 
b

a

dxxfI  

where  
 )(xf  is called the integrand, 
 a  lower limit of integration 
 b  upper limit of integration 
 
Simpson’s 1/3 Rule 

The trapezoidal rule was based on approximating the integrand by a first order polynomial, 
and then integrating the polynomial over interval of integration.  Simpson’s 1/3 rule is an 
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extension of Trapezoidal rule where the integrand is approximated by a second order 
polynomial. 
 

 

                                  Figure 1  Integration of a function 
 

 
Method 1: 
Hence 
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a
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where )(2 xf  is a second order polynomial given by 
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Solving the above three equations for unknowns, ,0a  1a  and 2a  give 
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Substituting values of ,0a  1a  and 2a  give 
















 




 )(
2

4)(
6

)(2 bf
ba

faf
ab

dxxf
b

a  
Since for Simpson 1/3 rule, the interval  ba,  is broken into 2 segments, the segment width 
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h




 
Hence the Simpson’s 1/3 rule is given by 
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Since the above form has 1/3 in its formula, it is called Simpson’s 1/3 rule. 
 
Method 2: 
Simpson’s 1/3 rule can also be derived by approximating )(xf  by a second order polynomial 
using Newton’s divided difference polynomial as 
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Integrating Newton’s divided difference polynomial gives us 
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Substituting values of ,0b  ,1b  and 2b  into this equation yields the same result as before 
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Method 3: 
One could even use the Lagrange polynomial to derive Simpson’s formula.  Notice any 
method of three-point quadratic interpolation can be used to accomplish this task.  In this 
case, the interpolating function becomes 
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Integrating this function gets 
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Believe it or not, simplifying and factoring this large expression yields you the same result as 
before 
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Method 4: 
Simpson’s 1/3 rule can also be derived by the method of coefficients.  Assume 
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Let the right-hand side be an exact expression for the integrals ,1
b

a

dx ,
b
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xdx  and 
b

a

dxx 2 .  This 

implies that the right hand side will be exact expressions for integrals of any linear 
combination of the three integrals for a general second order polynomial.  Now 
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Solving the above three equations for ,0c  1c  and 2c  give 
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The integral from the first method 
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can be viewed as the area under the second order polynomial, while the equation from 
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 can be viewed as the sum of the areas of three rectangles. 
 
Example 1 

The distance covered by a rocket in meters from 8t s to 30t s is given by 
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a) Use Simpson’s 1/3 rule to find the approximate value of x . 
b) Find the true error, tE . 

c) Find the absolute relative true error, t . 
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Solution 

a)         
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    =11065.72 m 
b) The exact value of the above integral is 

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

 
      =11061.34 m 

So the true error is 
ValueeApproximatValueTrueEt   

      =11061.34-11065.72 

      m38.4  
c) Absolute Relative true error, 
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Value True

Error True
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34.11061
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Multiple-segment Simpson’s 1/3 Rule 

Just like in multiple-segment trapezoidal rule, one can subdivide the interval  ba,  into n  
segments and apply Simpson’s 1/3 rule repeatedly over every two segments.  Note that n  
needs to be even.  Divide interval  ba,  into n  equal segments, so that the segment width is 
given by 
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Apply Simpson’s 1/3rd Rule over each interval, 
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Example 2 

Use 4-segment Simpson’s 1/3 rule to approximate the distance covered by a rocket in meters 
from 8t s to 30t s as given by 
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a) Use four segment Simpson’s 1/3rd Rule to find the probability. 
b) Find the true error, tE  for part (a). 

c) Find the absolute relative true error, t for part (a). 

Solution: 

a)  Using n  segment Simpson’s 1/3 rule, 
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b) The exact value of the above integral is 
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      =11061.34 m 

So the true error is 

 ValueeApproximatValueTrueEt   

 64.1106134.11061 tE  
     m30.0  
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c) Absolute Relative true error, 

100
Value True

Error True
t

 

      100
34.11061

3.0



  

      = 0.0027% 
 
Table 1   Values of Simpson’s 1/3 rule for Example 2 with multiple-segments 

n  Approximate Value tE  t  

2 
4 
6 
8 
10 

11065.72 
11061.64 
11061.40 
11061.35 
11061.34 

-4.38 
-0.30 
-0.06 
-0.02 
-0.01 

0.0396% 
0.0027% 
0.0005% 
0.0002% 
0.0001% 

 

Error in Multiple-segment Simpson’s 1/3 rule 

The true error in a single application of Simpson’s 1/3rd Rule is given1 by 
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In multiple-segment Simpson’s 1/3 rule, the error is the sum of the errors in each application 
of Simpson’s 1/3 rule.  The error in the n segments Simpson’s 1/3rd Rule is given by 
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1 The f(4) in the true error expression stands for the fourth derivative of the function f(x). 
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Hence, the total error in the multiple-segment Simpson’s 1/3 rule is 
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Chapter 07.04 
Romberg Rule of Integration 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. derive the Romberg rule of integration, and  
2. use the Romberg rule of integration to solve problems. 

 
What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about some of these applications in 
Chapters 07.00A-07.00G.   
Sometimes, the evaluation of expressions involving these integrals can become daunting, if 
not indeterminate.  For this reason, a wide variety of numerical methods has been developed 
to simplify the integral. 
Here, we will discuss the Romberg rule of approximating integrals of the form 

 
b

a

dxxfI           (1) 

where  
)(xf  is called the integrand 

a  lower limit of integration  
b  upper limit of integration 
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Error in Multiple-Segment Trapezoidal Rule 

The true error obtained when using the multiple segment trapezoidal rule with n  segments to 
approximate an integral 
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is given by 

   

n

f

n

ab
E

n

i
i

t







 1
2

3

12


        (2) 

where for each i , i  is a point somewhere in the domain   ihahia  ,1 , and  

the term 
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 can be viewed as an approximate average value of  xf   in  ba, .  This 

leads us to say that the true error tE  in Equation (2) is approximately proportional to 
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n
Et            (3) 

for the estimate of  
b

a

dxxf  using the n -segment trapezoidal rule. 

Table 1 shows the results obtained for  
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          Figure 1 Integration of a function. 
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Table 1  Values obtained using multiple segment trapezoidal rule for 
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n  Approximate 
Value tE  %t  %a  

1 11868 807  7.296 --- 
2 11266 205  1.854 5.343 
3 11153 4.91  0.8265 1.019 
4 11113 5.51  0.4655 0.3594 
5 11094 0.33  0.2981 0.1669 
6 11084 9.22  0.2070 0.09082 
7 11078 8.16  0.1521 0.05482 
8 11074 9.12  0.1165 0.03560 

 
The true error for the 1-segment trapezoidal rule is 807 , while for the 2-segment rule, the 
true error is 205 .  The true error of 205  is approximately a quarter of 807 .   The true 
error gets approximately quartered as the number of segments is doubled from 1 to 2.  The 
same trend is observed when the number of segments is doubled from 2 to 4 (the true error 
for 2-segments is 205  and for four segments is 5.51 ).  This follows Equation (3). 
This information, although interesting, can also be used to get a better approximation of the 
integral.  That is the basis of Richardson’s extrapolation formula for integration by the 
trapezoidal rule. 
 
 
Richardson’s Extrapolation Formula for Trapezoidal Rule 

The true error, tE , in the n -segment trapezoidal rule is estimated as 

2

1

n
Et   

2n

C
Et             (4) 

where C  is an approximate constant of proportionality. 
Since 

nt ITVE                                              (5) 

where 
TV = true value 

nI  = approximate value using n -segments 

Then from Equations (4) and (5),  

nITV
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C


2
                                            (6) 

If the number of segments is doubled from n  to n2  in the trapezoidal rule, 
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C
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Equations (6) and (7) can be solved simultaneously to get 
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Example 1 

The vertical distance in meters covered by a rocket from 8t  to 30t  seconds is given by 
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a) Use Romberg’s rule to find the distance covered.  Use the 2-segment and 4-segment 
trapezoidal rule results given in Table 1. 

b) Find the true error for part (a). 
c) Find the absolute relative true error for part (a). 

Solution 

a) m112662 I  

m111134 I  
Using Richardson’s extrapolation formula for the trapezoidal rule, the true value is given by 
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and choosing 2n ,  
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      m11062  
b) The exact value of the above integral is 
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    m11061  
so the true error 

Value eApproximat  Value True tE  

     1106211061  
     m1  

c) The absolute relative true error, t , would then be 

100
Value True

Error True
t  

      100
11061

1106211061



  

      %00904.0  
Table 2 shows the Richardson’s extrapolation results using 1, 2, 4, and 8 segments.  Results 
are compared with those of the trapezoidal rule. 
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Table 2  Values obtained using Richardson’s extrapolation formula for  the trapezoidal rule 
for 
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n  Trapezoidal Rule 
%t  for 

Trapezoidal Rule 

Richardson’s 
Extrapolation 

%t  for Richardson’s 

Extrapolation 
1 
2 
4 
8 

11868 
11266 
11113 
11074 

7.296 
1.854 
0.4655 
0.1165 

-- 
11065 
11062 
11061 

-- 
0.03616 
0.009041 
0.0000 

 
 
Romberg Integration 

Romberg integration is the same as Richardson’s extrapolation formula as given by 
(8)Equation .  However, Romberg used a recursive algorithm for the extrapolation as 

follows. 
The estimate of the true error in the trapezoidal rule is given by 
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Since the segment width, h , is given by   
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Equation (2) can be written as 
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The estimate of true error is given by 
2ChEt                                            (10) 

It can be shown that the exact true error could be written as 
...6
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1  hAhAhAEt                                         (11) 

and for small h , 
 42

1 hOhAEt                                (12) 

Since we used 2ChEt   in the formula (Equation (12)), the result obtained from 

(10)Equation  has an error of  4hO  and can be written as 
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where the variable TV  is replaced by  RnI 2  as the value obtained using Richardson’s 

extrapolation formula.  Note also that the sign   is replaced by the sign =. 
Hence the estimate of the true value now is 
   4

2 ChITV Rn   

Determine another integral value with further halving the step size (doubling the number of 
segments), 
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then 
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From Equation (13) and (14), 
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The above equation now has the error of  6hO .  The above procedure can be further 

improved by using the new values of the estimate of the true value that has the error of  6hO  

to give an estimate of  8hO . 
 
Based on this procedure, a general expression for Romberg integration can be written as 

2 ,
14 1

,11,1
1,1, 
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jkjk
jkjk                                        (16) 

 
The index k  represents the order of extrapolation.  For example,  1k  represents the values 
obtained from the regular trapezoidal rule, 2k  represents the values obtained using the 
true error estimate as  2hO , etc.  The index j  represents the more and less accurate estimate 
of the integral.  The value of an integral with a 1j  index is more accurate than the value of 
the integral with a j  index. 
 
For 2k , 1j , 
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For 3k , 1j , 
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Example 2 

The vertical distance in meters covered by a rocket from 8t  to 30t  seconds is given by 
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Use Romberg’s rule to find the distance covered.  Use the 1, 2, 4, and 8-segment trapezoidal 
rule results as given in Table 1. 
Solution 

From Table 1, the needed values from the original the trapezoidal rule are 
118681,1 I  

112662,1 I  

111133,1 I  

110744,1 I  

where the above four values correspond to using 1, 2, 4 and 8 segment trapezoidal rule, 
respectively.  To get the first order extrapolation values, 
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       11065  
Similarly 
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3
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II
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1111311074
11074


  

       11061  
For the second order extrapolation values, 
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      11062  
Similarly 
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       11061  
For the third order extrapolation values, 

63
1,32,3

2,31,4
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II


  

       
63

1106211061
11061


  

       m11061  
Table 3 shows these increasingly correct values in a tree graph. 
 
Table 3  Improved estimates of the value of an integral using Romberg integration. 
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11868

11266

11113

11074

11065

11062

11061

11062

11061

11061

1-segment 

2-segment 

4-segment 

8-segment 

 First Order Second Order Third Order 
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Chapter 07.05 
Gauss Quadrature Rule of Integration 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. derive the Gauss quadrature method for integration and be able to use it to solve 
problems, and 

2. use Gauss quadrature method to solve examples of approximate integrals. 
 
 
What is integration? 
Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about some of these applications in 
Chapters 07.00A-07.00G.   
Sometimes, the evaluation of expressions involving these integrals can become daunting, if 
not indeterminate.  For this reason, a wide variety of numerical methods has been developed 
to simplify the integral.   
Here, we will discuss the Gauss quadrature rule of approximating integrals of the form 

( )∫=
b

a

dxxfI  

where  
  )(xf  is called the integrand, 
  =a  lower limit of integration 
  =b  upper limit of integration 
  
 



07.05.2                                                        Chapter 07.05 
 
 

                                     Figure 1 Integration of a function. 
 
 
Gauss Quadrature Rule 

To derive the trapezoidal rule from the method of undetermined coefficients, we 
approximated 

Background: 

)()()( 21 bfcafcdxxf
b

a

+≈∫                                                                                       (1) 

Let the right hand side be exact for integrals of a straight line, that is, for an integrated form 
of 

( )∫ +
b

a

dxxaa 10  

So 

( )
b

a

b

a

xaxadxxaa 







+=+∫ 2

2

1010  

                       ( ) 






 −
+−=

2

22

10
abaaba                                                               (2) 

But from Equation (1), we want 

( ) )()( 2110 bfcafcdxxaa
b

a

+=+∫                                                                           (3) 

to give the same result as Equation (2) for xaaxf 10)( += . 

( ) ( ) ( )baacaaacdxxaa
b

a
10210110 +++=+∫

 
             ( ) ( )bcacacca 211210 +++=                                                               (4) 

Hence from Equations (2) and (4), 

( ) ( ) ( )bcacaccaabaaba 211210

22

10 2
+++=







 −
+−  
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Since 0a  and 1a  are arbitrary constants for a general straight line 

abcc −=+ 21                                                                                                            (5a) 

2

22

21
abbcac −

=+                                                                                                 (5b) 

Multiplying Equation (5a) by a  and subtracting from Equation (5b) gives 

 
22

abc −
=                                (6a) 

Substituting the above found value of 2c  in Equation (5a) gives 

21
abc −

=
                               (6b) 

Therefore 

∫ +≈
b

a

bfcafcdxxf )()()( 21  

               )(
2

)(
2

bfabafab −
+

−
=                                                                           (7) 

 
Derivation of two-point Gauss quadrature rule 

The two-point Gauss quadrature rule is an extension of the trapezoidal rule approximation 
where the arguments of the function are not predetermined as 

Method 1: 

a  and b , but as unknowns 1x  
and 2x .  So in the two-point Gauss quadrature rule, the integral is approximated as 

∫=
b

a

dxxfI )(
 

       )()( 2211 xfcxfc +≈  
There are four unknowns 1x , 2x , 1c  and 2c .  These are found by assuming that the formula 
gives exact results for integrating a general third order polynomial, 

3
3

2
210)( xaxaxaaxf +++= .  Hence 

( )∫∫ +++=
b

a

b

a

dxxaxaxaadxxf 3
3

2
210)(

 

               

b

a

xaxaxaxa 







+++=

432

4

3

3

2

2

10

 

         ( ) 






 −
+







 −
+







 −
+−=

432

44

3

33

2

22

10
abaabaabaaba                             (8) 

The formula would then give 

 =+≈∫ )()()( 2211 xfcxfcdxxf
b

a

         

     ( ) ( )3
23

2
222102

3
13

2
121101 xaxaxaacxaxaxaac +++++++                            (9) 
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Equating Equations (8) and (9) gives 

( )

( ) ( )
( ) ( ) ( ) ( )3

22
3

113
2

22
2

11222111210

3
23

2
222102

3
13

2
121101

44

3

33

2

22

10 432

xcxcaxcxcaxcxcacca

xaxaxaacxaxaxaac

abaabaabaaba

+++++++=

+++++++=








 −
+







 −
+







 −
+−

             (10) 
 
Since in Equation (10), the constants ,0a  ,1a  ,2a  and 3a  are arbitrary, the coefficients of 

,0a  ,1a  ,2a  and 3a are equal.  This gives us four equations as follows. 

21 ccab +=−  

2211

22

2
xcxcab

+=
−  

2
22

2
11

33

3
xcxcab

+=
−  

3
22

3
11

44

4
xcxcab

+=
−                                                                                     (11) 

 
Without proof (see Example 1 for proof of a related problem), we can find that the above 
four simultaneous nonlinear equations have only one acceptable solution 

21
abc −

=  

22
abc −

=  

23
1

21
ababx +

+







−






 −

=  

23
1

22
ababx +

+













 −

=                   (12) 

 
Hence 

( ) ( )2211)( xfcxfcdxxf
b

a

+≈∫       

               






 +
+







−−
+







 +
+







−
−−

=
23

1
2223

1
22

ababfabababfab                       (13) 

 

We can derive the same formula by assuming that the expression gives exact values for the 

individual integrals of 

Method 2: 

,1∫
b

a

dx  ,∫
b

a

xdx  ,2∫
b

a

dxx  and ∫
b

a

dxx3 .  The reason the formula can also be 
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derived using this method is that the linear combination of the above integrands is a general 
third order polynomial given by 3

3
2

210)( xaxaxaaxf +++= . 
These will give four equations as follows 

211 ccabdx
b

a

+=−=∫  

2211

22

2
xcxcabxdx

b

a

+=
−

=∫  

2
22

2
11

33
2

3
xcxcabdxx

b

a

+=
−

=∫  

3
22

3
11

44
3

4
xcxcabdxx

b

a

+=
−

=∫                                                                         (14) 

These four simultaneous nonlinear equations can be solved to give a single acceptable 
solution 

21
abc −

=  

22
abc −

=  

23
1

21
ababx +

+







−






 −

=  

23
1

22
ababx +

+













 −

=                                                                                     (15) 

 
Hence 

 






 +
+







−−
+







 +
+








−

−−
≈∫ 23

1
2223

1
22

)( ababfabababfabdxxf
b

a

            (16) 

Since two points are chosen, it is called the two-point Gauss quadrature rule.  Higher point 
versions can also be developed. 
 
Higher point Gauss quadrature formulas 
For example 

)()()()( 332211 xfcxfcxfcdxxf
b

a

++≈∫                                                                   (17) 

is called the three-point Gauss quadrature rule.  The coefficients 1c , 2c  and 3c , and the 
function arguments 1x , 2x  and 3x  are calculated by assuming the formula gives exact 
expressions for integrating a fifth order polynomial 

  ( )∫ +++++
b

a

dxxaxaxaxaxaa 5
5

4
4

3
3

2
210 .   

General n -point rules would approximate the integral 
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)(.......)()()( 2211 nn

b

a

xfcxfcxfcdxxf +++≈∫                                                   (18) 

 
Arguments and weighing factors for n-point Gauss quadrature rules 
In handbooks (see Table 1), coefficients and arguments given for n -point Gauss quadrature 
rule are given for integrals of the form 

∫ ∑
− =

≈
1

1 1
)()(

n

i
ii xgcdxxg                                                                                                 (19) 

 
Table 1 Weighting factors c  and function arguments x  used in Gauss quadrature formulas 

 
Points 

Weighting 
Factors 

Function 
Arguments 

2 

 

 

3 

 

 

 

4 

 

 

 

 

5 

 

 

 

 

 

6 

000000000.11 =c  

000000000.12 =c  

 
555555556.01 =c  

888888889.02 =c  
555555556.03 =c  

 
347854845.01 =c  

652145155.02 =c  
652145155.03 =c  

347854845.04 =c  

 
236926885.01 =c  

478628670.02 =c  
568888889.03 =c  

478628670.04 =c  
236926885.05 =c  

 
171324492.01 =c  

360761573.02 =c  
467913935.03 =c  

467913935.04 =c  

577350269.01 −=x  

577350269.02 =x  

 
774596669.01 −=x  

000000000.02 =x  
774596669.03 =x  

 
861136312.01 −=x  

339981044.02 −=x  
339981044.03 =x  

861136312.04 =x  

 
906179846.01 −=x  

538469310.02 −=x  
000000000.03 =x  

538469310.04 =x  
906179846.05 =x  

 
932469514.01 −=x  

661209386.02 −=x  
238619186.03 −=x  

238619186.04 =x  
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360761573.05 =c  

171324492.06 =c  

661209386.05 =x  

932469514.06 =x  
 

So if the table is given for ∫
−

1

1

)( dxxg  integrals, how does one solve ∫
b

a

dxxf )( ? 

The answer lies in that any integral with limits of [ ]ba,  can be converted into an integral 
with limits [ ]1,1− .  Let 

cmtx +=                                                                                                                   (20) 
If ,ax =  then 1−=t  
If ,bx =  then 1+=t  
such that 

cma +−= )1(  
cmb += )1(                                                                                                                (21) 

Solving the two Equations (21) simultaneously gives 

2
abm −

=  

2
abc +

=                                                                                                                    (22) 

Hence 

22
abtabx +

+
−

=  

dtabdx
2
−

=  

Substituting our values of x  and dx  into the integral gives us 

∫∫
−

−






 +

+
−

=
1

1 222
)( dxababxabfdxxf

b

a

                                                            (23) 

 
Example 1 

For an integral ,)(
1

1
∫
−

dxxf  show that the two-point Gauss quadrature rule approximates to 

)()()( 2211

1

1

xfcxfcdxxf +≈∫
−

 

where 
11 =c  
12 =c  

3
1

1 −=x
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3
1

2 =x
 

Solution 
Assuming the formula  

 ( ) ( )2211

1

1

)( xfcxfcdxxf +=∫
−

                                               (E1.1) 

gives exact values for integrals ,1
1

1
∫
−

dx  ,
1

1
∫
−

xdx  ,
1

1

2∫
−

dxx  and ∫
−

1

1

3dxx   .  Then  

21

1

1

21 ccdx +==∫
−

                                                                                            (E1.2) 

2211

1

1

0 xcxcxdx +==∫
−

                                                                                (E1.3) 

2
22

2
11

1

1

2

3
2 xcxcdxx +==∫

−

                                                                                (E1.4) 

3
22

3
11

1

1

3 0 xcxcdxx +==∫
−

                                                                                (E1.5) 

Multiplying Equation (E1.3) by 2
1x  and subtracting from Equation (E1.5) gives 

( ) 02
2

2
122 =− xxxc                                                                                                  (E1.6) 

The solution to the above equation is 
,02 =c  or/and 
,02 =x  or/and 
,21 xx =  or/and 

 21 xx −= .  
I. 02 =c  is not acceptable as Equations (E1.2-E1.5) reduce to ,21 =c  ,011 =xc  

,
3
22

11 =xc  and 03
11 =xc .  But since 21 =c , then 01 =x  from 011 =xc , but 01 =x  

conflicts with 
3
22

11 =xc .   

II. 02 =x  is not acceptable as Equations (E1.2-E1.5) reduce to 221 =+ cc , ,011 =xc  

,
3
22

11 =xc  and 03
11 =xc .  Since 011 =xc , then 1c  or 1x  has to be zero but this violates 

0
3
22

11 ≠=xc . 

III.  21 xx =  is not acceptable as Equations (E1.2-E1.5) reduce to 221 =+ cc , 

,01211 =+ xcxc  ,
3
22

12
2
11 =+ xcxc  and 03

12
3
11 =+ xcxc .  If 01 ≠x , then 01211 =+ xcxc  
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gives 021 =+ cc  and that violates 221 =+ cc .  If 01 =x , then that violates 

0
3
22

12
2
11 ≠=+ xcxc . 

That leaves the solution of 21 xx −=  as the only possible acceptable solution and in fact, it 
does not have violations (see it for yourself) 

21 xx −=                                                                                                                  (E1.7) 
Substituting (E1.7) in Equation (E1.3) gives 

21 cc =                                                                                                                     (E1.8) 
From Equations (E1.2) and (E1.8), 

121 == cc                                                                                                              (E1.9) 
Equations (E1.4) and (E1.9) gives 

3
22

2
2

1 =+ xx                                                                                                       (E1.10) 

Since Equation (E1.7) requires that the two results be of opposite sign, we get 

3
1

1 −=x
 

3
1

2 =x
 

Hence 

)()()( 2211

1

1

xfcxfcdxxf +=∫
−

                                                 (E1.11) 

               






+






−=
3

1
3

1 ff  

 
Example 2 

For an integral ,)(∫
b

a

dxxf  derive the one-point Gauss quadrature rule. 

Solution 
The one-point Gauss quadrature rule is 

 ( )11)( xfcdxxf
b

a

≈∫                                                                                                 (E2.1) 

Assuming the formula gives exact values for integrals ,1
1

1
∫
−

dx  and ∫
−

1

1

xdx  

11 cabdx
b

a

=−=∫
 

11

22

2
xcabxdx

b

a

=
−

=∫                                                                                 (E2.2) 

Since ,1 abc −=  the other equation becomes 
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2
)(

22

1
abxab −

=−  

 
21

abx +
=                                                                                             (E2.3) 

Therefore, one-point Gauss quadrature rule can be expressed as 







 +

−≈∫ 2
)()( abfabdxxf

b

a

                                                                                (E2.4) 

 
Example 3 
What would be the formula for  

∫ +=
b

a

bfcafcdxxf )()()( 21

 

if you want the above formula to give you exact values of ( ) ,2
00∫ +

b

a

dxxbxa  that is, a linear 

combination of x  and 2x . 
Solution  

If the formula is exact for a linear combination of x  and 2x , then 

 
∫ +=

−
=

b

a

bcacabxdx 21

22

2  

∫ +=
−

=
b

a

bcacabdxx 2
2

2
1

33
2

3
                                                                    (E3.1) 

Solving the two Equations (E3.1) simultaneously gives 



















−

−

=
















3

2
c
c

 33

22

2

1
22 ab

ab

ba
ba

 

a
ababc

22

1
2

6
1 +−−

−=
 

b
babac

22

2
2

6
1 −+

−=                                                                                 (E3.2) 

So  

∫
−+

−
+−−

−=
b

a

bf
b

babaaf
a

ababdxxf )(2
6
1)(2

6
1)(

2222

                               (E3.3) 

Let us see if the formula works. 

Evaluate ( )∫ −
5

2

2 32 dxxx  using Equation(E3.3) 
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( )∫ −
5

2

2 32 dxxx )()( 21 bfcafc +≈  

[ ] )]5(3)5(2[
5

)5(2)5(22
6
1)2(3)2(2

2
)2(25)5)(2(

6
1 2

22
2

22

−
−+

−−
+−−

−=  

5.46=  

The exact value of ( )∫ −
5

2

2 32 dxxx  is given by 

( )dxxx∫ −
5

2

2 32
5

2

23

2
3

3
2









−=

xx  

5.46=  
Any surprises?   

Now evaluate ∫
5

2

3dx  using Equation (E3.3) 

)()(3 21

5

2

bfcafcdx +≈∫  

         )3(
5

)5(2)5(22
6
1)3(

2
)2(25)5(2

6
1 2222 −+

−
+−−

−=  

         35.10=  

The exact value of ∫
5

2

3dx  is given by 

∫
5

2

3dx [ ]523x=   

          9=  
Because the formula will only give exact values for linear combinations of x  and 2x , it does 

not work exactly even for a simple integral of ∫
5

2

3dx . 

Do you see now why we choose xaa 10 +  as the integrand for which the formula 

)()( )( 21 bfcafcdxxf
b

a

+≈∫  

gives us exact values? 
 
Example 4 
Use two-point Gauss quadrature rule to approximate the distance covered by a rocket from 

8=t  to 30=t  as given by 

 ∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

Also, find the absolute relative true error. 
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Solution  

First, change the limits of integration from [ ]30,8  to [ ]1,1−  using Equation(23) gives 

∫∫
−







 +

+
−−

=
1

1

30

8 2
830

2
830

2
830)( dxxfdttf  

    ( )∫
−

+=
1

1

191111 dxxf  

Next, get weighting factors and function argument values from Table 1 for the two point rule, 
000000000.11 =c . 
577350269.01 −=x  
000000000.12 =c  
577350269.02 =x  

Now we can use the Gauss quadrature formula 

( ) ( ) ( )[ ]1911191111191111 2211

1

1

+++≈+∫
−

xfcxfcdxxf  

        ( ) ( )[ ]19)5773503.0(1119)5773503.0(1111 +++−= ff  
        [ ])35085.25()64915.12(11 ff +=  
                                   [ ])4811.708()8317.296(11 +=  
        m44.11058=  
since 

)64915.12(8.9
)64915.12(2100140000

140000ln2000)64915.12( −







−

=f  

           8317.296=  

)35085.25(8.9
)35085.25(2100140000

140000ln2000)35085.25( −







−

=f  

            4811.708=  
The absolute relative true error, t∈ , is (True value = 11061.34 m) 

100
34.11061

44.1105834.11061
×

−
=∈t  

       %0262.0=  
 
 
Example 5 
Use three-point Gauss quadrature rule to approximate the distance covered by a rocket from 

8=t  to 30=t  as given by 

 ∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dtt
t

x  

Also, find the absolute relative true error. 
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Solution  

First, change the limits of integration from [ ]30,8  to [ ]1,1−  using Equation (23) gives 

∫∫
−







 +

+
−−

=
1

1

30

8 2
830

2
830

2
830)( dxxfdttf  

    ( )∫
−

+=
1

1

191111 dxxf  

The weighting factors and function argument values are 
555555556.01 =c  
774596669.01 −=x  
888888889.02 =c  
000000000.02 =x  
555555556.03 =c  
774596669.03 =x  

and the formula is 

( ) ( ) ( ) ( )[ ]19111911191111191111 332211

1

1

+++++≈+∫
−

xfcxfcxfcdxxf   

  
( ) ( )
( ) 








++

+++−
=

19)7745967.0(115555556.0
19)0000000.0(118888889.019)7745967.(115555556.0

11
f

ff

  [ ])52056.27(55556.0)00000.19(88889.0)47944.10(55556.011 fff ++=  
  [ ]1069.79555556.07455.48488889.03327.23955556.011 ×+×+×=  
  m31.11061=  
since 

)47944.10(8.9
)47944.10(2100140000

140000ln2000)47944.10( −







−

=f  

           3327.239=  

)00000.19(8.9
)00000.19(2100140000

140000ln2000)00000.19( −







−

=f  

           7455.484=  

)52056.27(8.9
)52056.27(2100140000

140000ln2000)52056.27( −







−

=f  

            1069.795=  
 
The absolute relative true error, t∈ , is (True value = 11061.34 m) 

100
34.11061

31.1106134.11061
×

−
=∈t  

       %0003.0=  
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Chapter 07.06 
 

Integrating Discrete Functions 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. integrate discrete functions by several methods, 
2. derive the formula for trapezoidal rule with unequal segments, and 
3. solve examples of finding integrals of discrete functions. 

 
 
What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about a few of these applications 
in different engineering majors in Chapters 07.00A-07.00G.   
Sometimes, the function to be integrated is given at discrete data points, and the area under 
the curve is needed to be approximated. Here, we will discuss the integration of such discrete 
functions,  

 
b

a

dxxfI  

where  
 )(xf  is called the integrand and is given at discrete value of x , 
 a  lower limit of integration 
 b  upper limit of integration 
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                                  Figure 1  Integration of a function 
 

Integrating discrete functions 

Multiple methods of integrating discrete functions are shown below using an example. 
Example 1 

The upward velocity of a rocket is given as a function of time in Table 1. 
 
Table 1 Velocity as a function of time. 

(s)t  )m/s()(tv

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 
Determine the distance, ,s  covered by the rocket from 11t  to 16t  using the velocity 
data provided and use any applicable numerical technique.  
 
Solution 

Method 1: Average Velocity Method 
The velocity of the rocket is not provided at 11t  and ,16t  so we will have to use an 

interval that includes  16,11  to find the average velocity of the rocket within that range.  In 

this case, the interval  20,10  will suffice. 
04.227)10( v  
78.362)15( v  
35.517)20( v  
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3

)20()15()10( vvv
VelocityAverage


  

                             
3

35.51778.36204.227 
  

                             m/s06.369  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               
Figure 1 Velocity vs. time data for the rocket example 

 
 
Using 
 ,tvs    
we get 

m3.1845)1116)(06.369( s  
 
Method 2: Trapezoidal Rule 
If we were finding the distance traveled between times in the data table, we would simply 
find the area of the trapezoids with the corner points given as the velocity and time data 
points.  For example 


20

10

)( dttv  
20

15

15

10

)()( dttvdttv  

and applying the trapezoidal rule over each of the above integrals gives 

 
20

10

)( dttv   )]20()15([
2

1520
)]15()10([

2

1015
vvvv 





  

The values of )10(v , )15(v  and )20(v  are given in Table 1. 
However, we are interested in finding 

 
16

11

)( dttv  
16

15

15

11

)()( dttvdttv  
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and applying the trapezoidal rule over each of the above integrals gives 

 
16

11

)( dttv )]16()15([
2

1516
)]15()11([

2

1115
vvvv 





  

                          ))16(78.362(
2

1516
)78.362)11((

2

1115
vv 





  

How do we find )11(v  and )16(v ?   We use linear interpolation.  To find )11(v ,  

  ,10148.2704.227)(  ttv  1510  t  

  1011148.2704.227)11( v  
                   m/s19.254  
and to find )16(v  

  ,15913.3078.362)(  ttv  2015  t  

  1516913.3078.362)16( v  
          m/s69.393  
Then 

 
16

11

)( dttv ))16(78.362(
2

1516
)78.362)11((

2

1115
vv 





  

              )69.39378.362(
2

1516
)78.36219.254(

2

1115






  

              m2.1612  

Method 3: Polynomial interpolation to find the velocity profile 
Because we are finding the area under the curve from  ,20,10  we must use three points, 

,10t  ,15t  and ,20t  to fit a quadratic polynomial through the data.  Using polynomial 
interpolation, our resulting velocity function is (refer to notes on direct method of 
interpolation) 
   .2010,3766.0733.1705.12 2  ttttv  
Now, we simply take the integral of the quadratic within our limits, giving us 

  
16

11

23766.0733.1705.12 dttts  

   
16

11

32

3

3766.0

2

733.17
05.12 










tt
t  

        3322 1116
3

3766.0
1116

2

733.17
111605.12   

    m3.1604  
 
Method 4: Spline interpolation to find the velocity profile 
Fitting quadratic splines (refer to notes on spline method of interpolation) through the data 
results in the following set of quadratics 

,704.22)( ttv      100  t  

        ,88.88928.48888.0 2  tt   1510  t  
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        ,61.14166.351356.0 2  tt   2015  t  

        ,55.554956.336048.1 2  tt   5.2220  t  

        ,13.15286.2820889.0 2  tt   305.22  t  
The value of the integral would then simply be 

 
16

15

15

11

)()( dttvdttvs  

       
16

15

2
15

11

2 61.14166.351356.088.88928.48888.0 dtttdttt  

    

16

15

2315

11

23

61.141
2

66.35

3

1356.0
88.88

2

928.4

3

8888.0




















 t

tt
t

tt

 

    
     111588.881115

2

928.4
1115

3

8888.0 2233 
 

  
     151661.1411516

2

66.35
1516

3

1356.0
23

2233 



 

 

     m9.1595  
 
Example 2 

What is the absolute relative true error for each of the four methods used in Example 1 if the 
data in Table 1 was actually obtained from the velocity profile of 
















 t

t
tv 8.9

2100140000

140000
ln2000)( , 

 where v  is given in m/s and t  in s. 
Solution 

The distance covered between 11t and 16t  is 

 
















16

11

8.9
2100140000

140000
ln2000 dtt

t
s  

   m9.1604  

Method 1 
The approximate value obtained using average velocity method was m3.1845 .  Hence, the 

absolute relative true error, t , is 

%100
9.1604

3.18459.1604



t  

      %976.14  
Method 2: 
The approximate value obtained using the trapezoidal rule was m2.1612 .  Hence, the 

absolute relative true error, t , is 
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%100
9.1604

2.16129.1604



t  

      %451.0  
Method 3: 
The approximate value obtained using the direct polynomial was 1604.3 m.  Hence, the 
absolute relative true error, t , is 

%100
9.1604

3.16049.1604



t  

       %037.0  
Method 4: 
The approximate value obtained using the spline interpolation was 1595.9 m, hence, the 
absolute relative true error, t , is 

 %100
9.1604

9.15959.1604



t  

       %564.0  
 
Table 2  Comparison of discrete function methods of numerical integration 

Method 
Approximate
Value t  

Average Velocity 1845.3 14.976%
Trapezoidal Rule 1612.2 0.451% 
Polynomial Interpolation 1604.3 0.037% 
Spline Interpolation 1595.9 0.564% 

 
 
Trapezoidal Rule for Discrete Functions with Unequal Segments 

For a general case of a function given at n data points   11 , xfx ,   22 , xfx ,   33 , xfx , 

…..,   nn xfx , , where, nxxx ,....,,. 21  are in an ascending order, the approximate value of the 

integral  dxxf
nx

x


1

is given by 

       dxxfdxxfdxxfdxxf
n

n

n x

x

x

x

x

x

x

x




1

3

2

2

11

......  

               
......

22
32

23
21

12 






xfxf

xx
xfxf

xx  

              
2

....... 1
1

nn
nn

xfxf
xx


 

  

This approach uses the trapezoidal rule in the intervals  21, xx ,  32 , xx , …..,  nn xx ,1  and 

then adds the obtained values. 
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Example 3 

The upward velocity of a rocket is given as a function of time in Table 3. 
 
Table 3.   Velocity as a function of time. 

t v(t) 
s m/s 
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
                       Figure 2 Velocity vs. time data for the rocket example 
 
Determine the distance, ,s  covered by the rocket from 0t  to 30t  using the velocity data 
provided and the trapezoidal rule for discrete data with unequal segments. 
 
Solution 

           dttvdttvdttvdttvdttvdttv  
30

5.22

5.22

20

20

15

15

10

10

0

30

0

 

 

                         
2

1510
1015

2

100
010

vvvv 





  

         
                            

2

5.2220
205.22

2

2015
1520

vvvv 



  



07.06.8                                                        Chapter 07.06 
 

                                 
2

305.22
5.2230

vv 
  

                 
2

78.36204.227
5

2

04.2270
10





  

                                
2

97.60235.517
5.2

2

35.51778.362
5





  

        
2

67.90197.602
5.7


  

               4.56429.1399325.220055.14742.1135   
               m11852  

        Can you find the value of  
20

10

dttv ?     
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Chapter 07.07 
Integrating Improper Functions 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. integrate improper functions using methods such as the trapezoidal rule and 
Gaussian Quadrature schemes. 

 
What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why 
would we want to integrate a function?  Among the most common examples are finding the 
velocity of a body from an acceleration function, and displacement of a body from a velocity 
function.  Throughout many engineering fields, there are (what sometimes seems like) 
countless applications for integral calculus.  You can read about some of these applications in 
Chapters 07.00A-07.00G.   
Sometimes, the evaluation of expressions involving these integrals can become daunting, if 
not indeterminate.  For this reason, a wide variety of numerical methods has been developed 
to simplify the integral.   
Here, we will discuss the incorporation of these numerical methods into improper integrals. 
  
 

                                                Figure 1  Integration of a function 
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What is an improper integral? 

An integral is improper if 
a) the integrand becomes infinite in the interval of integration (including end points) 

or/and 
b) the interval of integration has an infinite bound. 

 
Example 1 

Give some examples of improper integrals 
Solution 

The integral 

 


2

0
24

dx
x

x
I  

is improper because the integrand becomes infinite at 2x . 
 
The integral 

 


2

0 1
dx

x

x
I  

is improper because the integrand becomes infinite at 1x . 
The integral 

 



0

tdteI t  

is improper because the interval of integration has an infinite bound. 
The integral 

 
 




0 1
dt

t

e
I

t

 

is improper because the interval of integration has an infinite bound and the integrand is 
infinite at 1t . 
           If the integrand is undefined at a finite number of points, the value of the area under 
the curve does not change.  Hence such integrals could theoretically be solved either by 
assuming any value of the integrand at such points.   Also, methods such as Gauss quadrature 
rule do not use the value of the integrand at end points, and hence integrands that are 
undefined at end points can be integrated using such methods. 
 For the case where there is an infinite interval of integration, one may make a change 
of variables that transforms the infinite range of integration to a finite one. 
 Let us illustrate these two cases with examples. 
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Figure 2  A plate with a crack under a uniform axial load  

 
Example 2 

In analyzing fracture of metals, one wants to know the opening displacement of cracks.  In a 
large plate, if there is a crack length of a2  meters, then the maximum crack opening 
displacement (MCOD) is given by 

 


a

dx
xa

x

E 0
22

2
MCOD


 

where 
 remote normal applied stress 
E Young’s modulus 

 
Assume 

m02.0a   
GPa210E and 

MPa70 . 
Find the exact value of the maximum crack opening displacement. 
Solution 

The maximum crack opening displacement (MCOD) is given by 

 


a

dx
xa

x

E 0
22

2
MCOD


 

Substituting m02.0a , GPa210E and MPa 70  gives 
 

2a
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02.0

0
229

6

)02.0(10210

10702
MCOD dx

x

x
 

             



02.0

0
20004.01500

1
dx

x

x
 

The exact value of the integral then is 

  02.0

0
20004.0

1500

1
xMCOD   

    02.00
1500

1
  

   m103333.1 5  
 
Example 3 

Any of the Newton-Cotes formulas, such as Trapezoidal rule and Simpson’s 1/3 rule, cannot 
be used directly for integrals where the integrands become infinite at the ends of the 
intervals.  Since Gauss quadrature rule does not require calculation of the integrand at the end 
points, it could be used directly to calculate such integrals.  Knowing this, find the value of 
the integral  




02.0

0
20004.01500

1
dx

x

x
  

from Example 2 by using two-point Gauss quadrature rule. 
 
Solution 

We will change the limits of integration from ]02.0,0[  to ]1,1[ , such that we may use the 

tabulated values of 1c , 2c , 1x , and 2x .  Assigning  

20004.0
)(

x

x
xf


 ,  

we get 










 





1

1

02.0

0 2

002.0

2

002.0

2

002.0

1500

1
)(

1500

1
dxxfdxxf

 

    
 




1

1

01.001.0
150000

1
dxxf

 
The function arguments and weighting factors for two-point Gauss quadrature rule are 

000000000.11 c  

577350269.01 x  

000000000.12 c  

577350269.02 x  
Giving us a formula of 
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     01.001.0
150000

1
01.001.0

150000

1
01.001.0

150000

1
2211

1

1




xfcxfcdxxf  

           

   01.0)57735.0(01.0
150000

1
01.0)57735.0(01.0

150000

1
 ff  

 )0157735.0(
150000

1
)0042265.0(

150000

1
ff   

 )28279.1(
150000

1
)21621.0(

150000

1
  

 m109934.9 6  
since 

21621.0
)0042265.0(0004.0

0042265.0
)0042265.0(

2



f  

28279.1
)0157735.0(0004.0

0157735.0
)0157735.0(

2



f  

The absolute relative true error, t , is 

%100
103333.1

109934.9103333.1
5

65





 



t  

       %048.25  
 
Example 4 

The value of the integral  

 


02.0

0
20004.01500

1
dx

x

x
  

in Example 3 by using two-point Gauss quadrature rule has a large absolute relative true 
error of more than 25%.  Use the double-segment two-point Gauss quadrature rule to find the 
value of the integral.  Take the interval  02.0,0  and split it into two equal segments of 

 01.0,0  and  02.0,01.0 , and then apply the two-point Gauss quadrature rule over each 
segment. 
Solution 

Write the integral with interval of [0,0.02] as sum of two integrals with intervals [0,0.01] and 
[0.01,0.02] gives 

 
02.0

01.0

01.0

0

02.0

0

)(
1500

1
)(

1500

1
)(

1500

1
dxxfdxxfdxxf  

                        















 












 






1

1

1

1

2

01.002.0

2

01.002.0

2

01.002.0

1500

1
          

2

001.0

2

001.0

2

001.0

1500

1

dxxf

dxxf
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1

1

1

1

015.0005.0
300000

1
005.0005.0

300000

1
dxxfdxxf  

Using the two-point Gauss quadrature rule, this becomes 

    005.0005.0
300000

1
005.0005.0

300000

1
)(

1500

1
2211

02.0

0

 xfcxfcdxxf    

                               015.0005.0
300000

1
015.0005.0

300000

1
2211  xfcxfc  

Using the same arguments and weighting factors as before 

   005.0)57735.0(005.0
300000

1
005.0)57735.0(005.0

300000

1
)(

1500

1 02.0

0

 ffdxxf
                 

  
   015.0)57735.0(005.0

300000

1
015.0)57735.0(005.0

300000

1
 ff  

           

)0178868.0(
300000

1
)0121132.0(

300000

1

)0078868.0(
300000

1
)0021132.0(

300000

1

ff

ff




 

            99900.176115.042911.010626.0
300000

1
  

           m100985.1 5  
since 

10626.0
)0021133.0(0004.0

0021133.0
)0021133.0(

2



f  

42911.0
)0078868.0(0004.0

0078868.0
)0078868.0(

2



f  

76115.0
)0121133.0(0004.0

0121133.0
)0121133.0(

2



f  

99900.1
)0178868.0(0004.0

0178868.0
)0178868.0(

2



f  

The absolute relative true error, t , is 

%100
103333.1

100985.1103333.1
5

55





 



t  

       %610.17  
Repeating this process by splitting the interval into progressively more equal segments and 
applying the two-point Gaussian quadrature rule over each segment will obtain the data 
displayed in Table 1. 
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Table 1  Gauss quadrature rule on an improper integral 

 










02.0

0
20004.01500

1
dx

x

x
 

Number of 
Segments 

Value %t  

1 6109934.9  25.05 

2 5100985.1  17.61 

3 5101420.1  14.35 

4 5101679.1  12.41 

5 5101855.1  11.09 

6 5101984.1  10.12 

7 5102085.1  9.365 

8 5102166.1  8.758 

 
As evident from Table 1, the integral does not converge rapidly to the true value with an 
increase in number of quadrature points.  Since the integrand becomes infinite at the end 
point ,02.0x  its value changes rapidly near 02.0x .  Since the multiple-segment two-
point Gauss quadrature rule is non-adaptive, it will take a large number of segments to reach 
a converging value. 
 
Example 5 

Euler’s constant in mathematics is defined as 





0

1)( dttex xt  

Find )4.2(  using two and three-point Gauss quadrature rules.  Also, find the absolute 
relative true error for each case. 
Solution 





0

14.2)4.2( dtte t  

          



0

4.1 dtte t  

To solve the above improper integral, one may make a change of variables as 

t
y




1

1
 

giving 

  1
1


y
t  

dy
y

dt
2

1
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0,at ,1,0At  ytyt .  So the integral can be re-written as 

 


























0

1
2

4.1
1

1
1

1
1

)4.2( dy
yy

e y  

First, assigning 






























2

4.1
1

1
1

1
1

)(
yy

eyf y  

and then changing the limits of integration, we get 










 





1

1 2

10

2

10

2

10
)4.2( dyyf  

            



1

1

5.05.05.0 dyyf  

Now, one can use two-point Gauss Quadrature Rule to find the value of )4.2(  with 
weighting factors and function arguments of 

000000000.11 c  

577350269.01 y  

000000000.12 c  

577350269.02 y  
 

   5.05.05.05.05.05.0)4.2( 2211  yfcyfc  

     5.0)57735.0(5.05.05.0)57735.0(5.05.0  ff  
  )21133.0(5.0)78868.0(5.0 ff   
  )38857.3(5.0)19458.0(5.0   
  7916.1  
since 
















 







 

2

4.1
1

78868.0

1

)78868.0(

1
1

78868.0

1
)78868.0( ef  

          19458.0  
















 







 

2

4.1
1

21133.0

1

)21133.0(

1
1

21133.0

1
)21133.0( ef  

          38857.3  
The true value of the integral 

2422.1)4.2(
0

4.1  


 dtte t  

so the absolute relative true error, t , is 

%100
2422.1

7916.12422.1



t  

       %230.44  
For three-point Gauss Quadrature Rule, the weighting factors and function arguments are 
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555555556.01 c  

774596669.01 y  

888888889.02 c  

000000000.02 y  

555555556.03 c  

774596669.03 y  

The limits of integration and )(yf  remain the same as for the two-point rule, so 

     5.05.05.05.05.05.05.05.05.0)4.2( 332211  yfcyfcyfc  

  
 

   5.0)77460.0(5.0)55556.0(5.05.0)0(5.0)88889.0(5.0            

5.0)77460.0(5.0)55556.0(5.0




ff

f
 

  )11270.0(27778.0)5.0(44444.0)88730.0(27778.0 fff   
  )53890.0(27778.0)47152.1(44444.0)06224.0(27778.0   
  82100.0  
since 
















 







 

2

4.1
1

88730.0

1

)88730.0(

1
1

88730.0

1
)88730.0( ef  

          06224.0  
















 







 

2

4.1
1

5.0

1

)5.0(

1
1

5.0

1
)5.0( ef  

  47152.1  
















 







 

2

4.1
1

11270.0

1

)11270.0(

1
1

11270.0

1
)11270.0( ef  

          53894.0  
The absolute relative true error, t , is 

 %100
2422.1

82099.02422.1



t  

       %906.33  
 
 
Example 6 

As you can see from the plot given in Figure 3 for the integrand in 




0

4.1 dtte t of Example 5, 

once the value of t  exceeds 10, the area under the curve looks insignificant.  What would 
happen if you used the two-segment two-point Gauss quadrature rule within the significant 
range of ]10,0[ ? 
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0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0

e
t
t
1.4

100 t  
                  Figure 3   Plot of  integrand  

Solution 

In doing this, no change of variables is necessary—only a change in the limits of each 
segment is needed to apply Gauss quadrature rule.  Observe 





0

4.1)4.2( dtte t  

  
10

0

4.1 dtte t  

    
10

4.2

4.1
4.2

0

4.1 dttedtte tt  

Setting 4.1)( tetf t  to make the change of variables, we get 










 










 





1

1

1

1 2

4.210

2

4.210

2

4.210

2

04.2

2

04.2

2

04.2
)4.2( dttfdttf  

     



1

1

1

1

2.68.38.32.12.12.1 dttfdttf  

Applying two-point Gauss quadrature rule gets 
000000000.11 c  

  577350269.01 t  

000000000.12 c  

  577350269.02 t  
 

       2.68.38.32.68.38.32.12.12.12.12.12.1)4.2( 22112211  tfctfctfctfc

 
   
   2.6)57735.0(8.38.32.6)57735.0(8.38.3

2.1)57735.0(2.12.12.1)57735.0(2.12.1




ff

ff
 

  )39393.8(8.3)00607.4(8.3)89282.1(2.1)50718.0(2.1 ffff   
  )00445.0(8.3)12706.0(8.3)36805.0(2.1)23279.0(2.1   
  2207.1  
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since 

23279.050718.0)50718.0( 4.150718.0  ef  

36805.089282.1)89282.1( 4.189282.1  ef  

12706.000607.4)00607.4( 4.100607.4  ef  

00445.039393.8)39393.8( 4.139393.8  ef  

The absolute relative true error, t , is 

%100
2422.1

2207.12422.1



t  

       %731.1  
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Chapter 07.08 
Simpson 3/8 Rule for Integration 
 
 
 
After reading this chapter, you should be able to 

1. derive the formula for Simpson’s 3/8 rule of integration, 
2. use Simpson’s 3/8 rule it to solve integrals, 
3. develop the formula for multiple-segment Simpson’s 3/8 rule of integration, 
4. use multiple-segment Simpson’s 3/8 rule of integration to solve integrals,  
5. compare true error formulas for multiple-segment Simpson’s 1/3 rule and multiple-

segment Simpson’s 3/8 rule, and 
6. use a combination of Simpson’s 1/3 rule and Simpson’s 3/8 rule to approximate 

integrals. 
 
 
Introduction 
The main objective of this chapter is to develop appropriate formulas for approximating the 
integral of the form 

∫=
b

a

dxxfI )(                                             (1) 

Most (if not all) of the developed formulas for integration are based on a simple concept of 
approximating a given function )(xf by a simpler function (usually a polynomial function) 

)(xfi , where i  represents the order of the polynomial function. In Chapter 07.03, Simpsons 
1/3 rule for integration was derived by approximating the integrand )(xf with a 2nd order 
(quadratic) polynomial function. )(2 xf  

2
2102 )( xaxaaxf ++=          (2) 
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Figure 1 )(~ xf  Cubic function. 

 
In a similar fashion, Simpson 3/8 rule for integration can be derived by approximating the 
given function )(xf  with the 3rd order (cubic) polynomial )(3 xf  

{ }
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+++=

3
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32

3
3
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2103

,,,1
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a
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a

xxx

xaxaxaaxf

                   (3) 

which can also be symbolically represented in Figure 1. 
Method 1 
The unknown coefficients 3210 and,, aaaa  in Equation (3) can be obtained by substituting 4 
known coordinate data points ( ) ( ) ( ) ( )},{and},{},,{},,{ 33221100 xfxxfxxfxxfx  into 
Equation (3) as follows. 













+++=

+++=

+++=

+++=

2
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2
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2
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2
222102

2
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2
121101

2
03

2
020100

)(

)(

)(

)(

xaxaxaaxf
xaxaxaaxf
xaxaxaaxf
xaxaxaaxf

         (4) 

Equation (4) can be expressed in matrix notation as 
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3

2

1

0

3

2

1

0

3
3

2
33

3
2

2
22

3
1

2
11

3
0

2
00

1
1
1
1

xf
xf
xf
xf

a
a
a
a

xxx
xxx
xxx
xxx

                   (5) 

The above Equation (5) can symbolically be represented as 
[ ] 141444 ××× = faA

                      (6) 
Thus,  

[ ] fA

a
a
a
a

a


×=



















= −1

4

3

2

1

                     (7) 

Substituting Equation (7) into Equation (3), one gets 
( ) { } [ ] fAxxxxf


××= −132

3 ,,,1                    (8) 
As indicated in Figure 1, one has 




























=

−
+=

+=

+
=

−
+=

+=

+
=

−
+=

+=
=

b

aba

hax

ba

aba

hax

ba

aba

hax
ax

3
33

3
3
2

3
22

2
3

2
3

3

2

1

0

                    (9) 

With the help from MATLAB [Ref. 2], the unknown vector a  (shown in Equation 7) can be 
solved for symbolically. 
 
Method 2 
Using Lagrange interpolation, the cubic polynomial function ( )xf3  that passes through 4 
data points (see Figure 1) can be explicitly given as 
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( ) ( )( )( )
( )( )( ) ( ) ( )( )( )

( )( )( ) ( )

( )( )( )
( )( )( ) ( ) ( )( )( )

( )( )( ) ( )3
231303

210
3

321202

310

1
312101

320
0

302010

321
3

xf
xxxxxx

xxxxxx
xf

xxxxxx
xxxxxx

xf
xxxxxx

xxxxxx
xf

xxxxxx
xxxxxx

xf

×
−−−

−−−
+×

−−−
−−−

+

×
−−−
−−−

+×
−−−

−−−
=

    (10) 

 
Simpsons 3/8 Rule for Integration 

Substituting the form of ( )xf3  from Method (1) or Method (2),  

( )

( )∫

∫

≈

=

b

a

b

a

dxxf

dxxfI

3

 

( ) ( ) ( ) ( ) ( ){ }
8

33 3210 xfxfxfxfab +++
×−=                (11) 

Since  

3
abh −

=  

hab 3=−  
and Equation (11) becomes 

( ) ( ) ( ) ( ){ }3210 33
8
3 xfxfxfxfhI +++×≈                 (12) 

Note the 3/8 in the formula, and hence the name of method as the Simpson’s 3/8 rule. 
The true error in Simpson 3/8 rule can be derived as [Ref. 1] 

( )ζfabEt ′′′′×
−

−=
6480

)( 5

 , where ba ≤≤ ζ                            (13) 

Example 1  
The vertical distance covered by a rocket from 8=x  to 30=x  seconds is given by 

∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dxx
t

s  

Use Simpson 3/8 rule to find the approximate value of the integral. 
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Solution 

3333.7
3

830
3

=

−
=

−
=

−
=

ab
n

abh

 

( ) ( ) ( ) ( ){ }3210 33
8
3 xfxfxfxfhI +++×≈  

( )

2667.177

88.9
82100140000

140000ln2000

8

0

0

=

×−







×−
=

=

xf

x

 

( )
















=

×−







×−
=

=
+=
+=

4629.372

3333.158.9
3333.152100140000

140000ln2000

3333.15
3333.78

1

01

xf

hxx

 

( )
















=

×−







×−
=

=
+=
+=

8976.608

6666.228.9
6666.222100140000

140000ln2000

6666.22
)3333.7(28

2

2

02

xf

hxx

 



07.08.6                                                        Chapter 07.08 
 
 
 
 
 

( )
















=

×−







×−
=

=
+=
+=

6740.901

308.9
302100140000

140000ln2000

30
)3333.7(38

3

3

03

xf

hxx

 

 
Applying Equation (12), one has 

{ }

3104.11063

6740.9018976.60834629.37232667.1773333.7
8
3

=

+×+×+××=I
 

The exact answer can be computed as 
34.11061=exactI  

 
Multiple Segments for Simpson 3/8 Rule 

Using n = number of equal segments, the width h can be defined as 

n
abh −

=                                (14) 

The number of segments need to be an integer multiple of 3 as a single application of 
Simpson 3/8 rule requires 3 segments. 
The integral shown in Equation (1) can be expressed as 

( )

( )∫

∫

≈

=

b

a

b

a

dxxf

dxxfI

3

 

( ) ( ) ( )∫∫∫
=

= −

+++≈
bx

x

x

x

x

ax

n

n

dxxfdxxfdxxf
3

6

3

3

0

333 ........                (15) 

Using Simpson 3/8 rule (See Equation 12) into Equation (15), one gets  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 







+++++
+++++++

=
−−− nnnn xfxfxfxf

xfxfxfxfxfxfxfxfhI
123

65433210

33.....
3333

8
3          (16) 

( ) ( ) ( ) ( ) ( )








++++= ∑∑∑
−

=

−

=

−

=
n

n

i
i

n

i
i

n

i
i xfxfxfxfxfh 3

,..9,6,3

1

,..8,5,2

2

,..7,4,1
0 233

8
3                         (17) 

Example 2 
The vertical distance covered by a rocket from 8=x  to 30=x  seconds is given by 
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∫ 







−





−
=

30

8

8.9
2100140000

140000ln2000 dxx
t

s  

Use Simpson 3/8 multiple segments rule with six segments to estimate the vertical distance. 
Solution 
In this example, one has (see Equation 14): 

6666.3
6

830
=

−
=h  

( ){ } { }2667.177,8, 00 =xfx  
( ){ } { } 6666.116666.38where4104.270,6666.11, 0111 =+=+== hxxxfx  
( ){ } { } 3333.152where4629.372,3333.15, 0222 =+== hxxxfx  
( ){ } { } 193where7455.484,19, 0333 =+== hxxxfx  
( ){ } { } 6666.224where8976.608,6666.22, 0444 =+== hxxxfx  
( ){ } { } 3333.265where9870.746,3333.26, 0555 =+== hxxxfx  
( ){ } { } 306where6740.901,30, 0666 =+== hxxxfx  

Applying Equation (17), one obtains: 

( ) ( ) ( ) ( )








++++= ∑∑∑
=−

=

=−

=

=−

=

6740.9012332667.1776666.3
8
3 33

,..6,3

51

,..5,2

42

,..4,1

n

i
i

n

i
i

n

i
i xfxfxfI  

( ) ( ) ( ) ( ){ }6740.9017455.48429870.7464629.37238976.6084104.27032667.1773750.1 ++++++=
 4696.601,11=  
Example 3  
Compute 

∫
=

= 







−







−

=
30

8

,8.9
2100000,140

000,140ln2000
b

a

dxx
x

I   

using Simpson 1/3 rule (with =1n 4), and Simpson 3/8 rule (with =2n 3). 
Solution 
The segment width is  

n
abh −

=  

21 nn
ab

+
−

=  

( )
1429.3

34
830

=
+
−

=
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( )
( )
( )
( )
( )
( ) 301429.3787

8571.261429.3686
7143.231429.3585

rule1/3sSimpson'

5714.201429.3484
4286.171429.3383
2857.141429.3282

1429.111429.381
8

07

06

05

04

03

02

01

0

=+=+=
=+=+=
=+=+=














=+=+=
=+=+=
=+=+=

=+=+=
==

hxx
hxx
hxx
hxx
hxx
hxx

hxx
ax

 

 

( ) 2667.17788.9
82100000,140

000,140ln200080 =×−







×−

==xf  

Similarly: 
( )
( )
( )
( )
( )
( )
( ) 6740.901

9978.767
8260.646
3909.536
2749.435
3241.342

5863.2561429.11

7

6

5

4

3

2

1

=
=
=
=
=
=

==

xf
xf
xf
xf
xf
xf
xf

 

For multiple segments ( )segments4first1 =n , using Simpson 1/3 rule, one obtains (See 
Equation 19): 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ){ }

( ) ( ){ }

1197.4364

3909.5363241.34222749.4355863.25642667.177
3

1429.3

24
3

24
3

42310

22

,...2

31

,...3,1
01 1

11

=

++++





=

++++





=









+++





= ∑∑

=−

=

=−

=

xfxfxfxfxfh

xfxfxfxfhI n

n

i
i

n

i
i

 

For multiple segments ( )segments3last2 =n , using Simpson 3/8 rule, one obtains (See 
Equation 17): 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ){ }

3663.6697

6740.9019978.76738260.64633909.5361429.3
8
3

)(33
8

3

)()(233
8

3

233
8

3

7654

3210

03

,..6,3

21

,...2

12

,...3,1
02 1

222

=
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 ×=
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=
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= ∑∑∑

=−

=

=−

=

=−

=

xfxfxfxfh

tfoncontributinotftftfh

tftftftftfhI n

n

i
i

n

i
i

n

i
i

 

The mixed (combined) Simpson 1/3 and 3/8 rules give 

11061
3663.66971197.4364

21

=
+=

+= III
 

Comparing the truncated error of Simpson 1/3 rule 
( ) ( )ζfabEt ′′′′×
−

−=
2880

5

                            (18) 

With Simpson 3/8 rule (See Equation 12), it seems to offer slightly more accurate answer 
than the former. However, the cost associated with Simpson 3/8 rule (using 3rd order 
polynomial function) is significantly higher than the one associated with Simpson 1/3 rule 
(using 2nd order polynomial function). 

The number of multiple segments that can be used in the conjunction with Simpson 
1/3 rule is 2, 4, 6, 8, … (any even numbers).  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) )19(24
3

4.....44
3

2

...6,4,2

1

,...3,1
0

124322101









+++





=

+++++++++





=

∑∑
−

=

−

=

−−

n

n

i
i

n

i
i

nnn

xfxfxfxfh

xfxfxfxfxfxfxfxfxfhI

However, Simpson 3/8 rule can be used with the number of segments equal to 3,6,9,12,.. (can 
be certain odd or even numbers that are multiples of 3).  
If the user wishes to use, say 7 segments, then the mixed Simpson 1/3 rule (for the first 4 
segments), and Simpson 3/8 rule (for the last 3 segments) would be appropriate. 
 
Computer Algorithm for Mixed Simpson 1/3 and 3/8 Rule for Integration 
Based on the earlier discussion on (single and multiple segments) Simpson 1/3 and 3/8 rules, 
the following “pseudo” step-by-step mixed Simpson rules can be given as 
Step 1   
User inputs information, such as 

)(xf = integrand 
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1n = number of segments in conjunction with Simpson 1/3 rule (a multiple of 2 (any 
even numbers) 

2n = number of segments in conjunction with Simpson 3/8 rule (a multiple of 3) 
Step 2 
Compute  

21 nnn +=  

n
abh −

=  

bnhax

ihax

hax
hax

ax

n

i

=+=

+=

+=
+=

=

.

.

.

.
2

1

2

1

0

 

Step 3 
Compute result from multiple-segment Simpson 1/3 rule (See Equation 19) 

( ) ( ) ( ) ( )








+++





= ∑∑

−

=

−

=
1

11 2

...6,4,2

1

,...3,1
01 24

3 n

n

i
i

n

i
i xfxfxfxfhI          (19, repeated) 

Step 4 
Compute result from multiple segment Simpson 3/8 rule (See Equation 17) 

( ) ( ) ( ) ( ) ( )








++++





= ∑∑∑

−

=

−

=

−

=
2

222 3

,...9,6,3

1

...8,5,2

2

...7,4,1
02 233

8
3

n

n

i
i

n

i
i

n

i
i xfxfxfxfxfhI         (17, repeated) 

Step 5 
21 III +≈                     (20) 

and print out the final approximated answer for I . 
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Chapter 08.01 
Primer for Ordinary Differential Equations 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. define an ordinary differential equation, 
2. differentiate between an ordinary and partial differential equation, and 
3. solve linear ordinary differential equations with fixed constants by using classical 

solution and Laplace transform techniques.  
 
Introduction 
An equation that consists of derivatives is called a differential equation.  Differential 
equations have applications in all areas of science and engineering.  Mathematical 
formulation of most of the physical and engineering problems leads to differential equations.  
So, it is important for engineers and scientists to know how to set up differential equations 
and solve them. 
 
Differential equations are of two types  
(A) ordinary differential equations (ODE)  
(B) partial differential equations (PDE) 

 
An ordinary differential equation is that in which all the derivatives are with respect to a 
single independent variable.  Examples of ordinary differential equations include 

022

2

=++ y
dx
dy

dx
yd ,  4)0(  ,2)0( == y

dx
dy , 

,sin53 2

2

3

3

xy
dx
dy

dx
yd

dx
yd

=+++  ,12)0(2

2

=
dx

yd  2)0( =
dx
dy ,   4)0( =y

Ordinary differential equations are classified in terms of order and degree.  Order of an 
ordinary differential equation is the same as the highest derivative and the degree of an 
ordinary differential equation is the power of highest derivative. 
 
Thus the differential equation, 

 xexy
dx
dyx

dx
ydx

dx
ydx =+++ 2

2
2

3

3
3  

08.01.1 
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is of order 3 and degree 1, whereas the differential equation       

 x
dx
dyx

dx
dy sin1 2

2

=+⎟
⎠
⎞

⎜
⎝
⎛ +  

is of order 1 and degree 2. 
An engineer’s approach to differential equations is different from a mathematician.  While, 
the latter is interested in the mathematical solution, an engineer should be able to interpret the 
result physically.  So, an engineer’s approach can be divided into three phases: 

a) formulation of a differential equation from a given physical situation, 
b) solving the differential equation and evaluating the constants, using given conditions, 

and  
c) interpreting the results physically for implementation. 

 
Formulation of differential equations 
As discussed above, the formulation of a differential equation is based on a given physical 
situation.  This can be illustrated by a spring-mass-damper system. 
 

                             
Above is the schematic diagram of a spring-mass-damper system. A block is suspended 
freely using a spring.   As most physical systems involve some kind of damping - viscous 
damping, dry damping, magnetic damping, etc., a damper or dashpot is attached to account 
for viscous damping. 

K
b  

x

Figure 1 Spring-mass damper system. 

M 

 Let the mass of the block be M , the spring constant be K , and the damper 
coefficient be b .  If we measure displacement from the static equilibrium position we need 
not consider gravitational force as it is balanced by tension in the spring at equilibrium. 
 Below is the free body diagram of the block at static and dynamic equilibrium.  So, 
the equation of motion is given by  
                                                                                         (1)           DS FFMa +=
where   
   is the restoring force due to spring. SF
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  is the damping force due to the damper. DF
  is the acceleration. a
The restoring force in the spring is given by 
                                                                                                    (2) KxFS −=
as the restoring force is proportional to displacement and it is negative as it opposes the 
motion.  The damping force in the damper is given by 
                                                                                                  (3) bvFD −=
as the damping force is directly proportional to velocity and also opposes motion. 
Therefore, the equation of motion can be written as 
                                                                                              (4) bvKxMa −−=

 
Since  

SF  

Ma

Dynamic Static 

Mg  

T  DF  

 

             Figure 2 Free body diagram of spring-mass-damper system.   

 2

2

dt
xda =  and 

dt
dxv =  

from Equation (4), we get 

 
dt
dxbKx

dt
xdM −−=2

2

 

    02

2

=++ Kx
dt
dxb

dt
xdM                                                (5) 

This is an ordinary differential equation of second order and of degree one. 
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Solution to linear ordinary differential equations 
In this section we discuss two techniques used to solve ordinary differential equations 
(A) Classical technique  
(B) Laplace transform technique 

 
Classical Technique 
The general form of a linear ordinary differential equation with constant coefficients is given 
by 

 )(......... 122

2

31

1

xFyk
dx
dyk

dx
ydk

dx
ydk

dx
yd

n

n

nn

n

=+++++ −

−

                                      (6) 

The general solution contains two parts  
                                                   (7) PH yyy +=
where  
  is the homogeneous part of the solution and Hy
  is the particular part of the solution. Py
The homogeneous part of the solution  is that part of the solution that gives zero when 
substituted in the left hand side of the equation.  So,  is solution of the equation 

Hy

Hy

 0......... 122

2

31

1

=+++++ −

−

yk
dx
dyk

dx
ydk

dx
ydk

dx
yd

n

n

nn

n

                             (8) 

  The above equation can be symbolically written as  
                                                        (9) 0................. 12

1 =++++ − ykDykyDkyD n
n

n

                            (10) 0).................( 12
1 =++++ − ykDkDkD n

n
n

 where, 

 n

n
n

dx
dD =                                                                                                    (11)                    

 

.

.

.

1

1
1

−

−
− = n

n
n

dx
dD

 

  
operating on y  is the same as  
 ,  ),( 1rD − )( 2rD − )( nrD −
operating one after the other in any order, where 
 )(....,),........(),( 21 nrDrDrD −−−  
are factors of 
 0                            (12) ............... 12

1 =++++ − kDkDkD n
n

n

To illustrate 
   0)23( 2 =+− yDD
is same as 
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   0)1)(2( =−− yDD
  0)2)(1( =−− yDD
Therefore, 
                              (13) 0)....................( 12

1 =++++ − ykDkDkD n
n

n

is same as 
     0).........().........)(( 11 =−−− − yrDrDrD nn                            (14)  
operating one after the other in any order. 
 
Case 1: Roots are real and distinct 
The entire left hand side becomes zero if ( ) 01 =− yrD . Therefore, the solution to 

 is a solution to a homogeneous equation.  ( ) 01 =− yrD ( ) 01 =− yrD  is called Leibnitz’s 
linear differential equation of first order and its solution is  
                                           (15) ( ) 01 =− yrD

 yr
dx
dy

1=                                           (16) 

 dxr
y

dy
1=                                           (17) 

Integrating both sides we get 
                                           (18) cxry += 1ln
                                           (19) xrcey 1=
Since any of the  factors can be placed before , there are  different solutions 
corresponding to  different factors given by 

n y n
n

        xrxrxr
n

xr
n eCeCeCeC nn 121

121 ,.....,,........., −
−

where  
  are the roots of Equation (12) and 121, ,..,,......... rrrr nn −

  are constants. 121, ,,......, CCCC nn −

We get the general solution for a homogeneous equation by superimposing the individual 
Leibnitz’s solutions.  Therefore 
                                                (20) xr

n
xr

n
xrxr

H
nn eCeCeCeCy ++++= −

−
121

121 .............
 
Case 2: Roots are real and identical  
 If two roots of a homogeneous equation are equal, say 21 rr = , then 

 0))(...(..........).........)(( 111 =−−−− − yrDrDrDrD nn                                      (21) 
 Let’s work at 
                                        (22) 0))(( 11 =−− yrDrD
If 
                                (23) zyrD =− )( 1

then 
  0)( 1 =− zrD
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                                         (24) xreCz 1
2=

Now substituting the solution from Equation (24) in Equation (23) 
  xreCyrD 1

21 )( =−

 xreCyr
dx
dy

1
21 =−  

 21
11 Cyer

dx
dye xrxr =− −−  

 2
)( 1

C
dx

yed xr

=
−

 

                               (25) dxCyed xr
2)( 1 =−

Integrating both sides of Equation (25), we get 
     12

1 CxCye xr +=−

                               (26)                xreCxCy 1)( 12 +=
Therefore the final homogeneous solution is given by  
                                                  (27) ( ) xr

n
xrxr

H
neCeCexCCy ++++= ...31

321

Similarly, if m roots are equal the solution is given by 
            ( ) xr

n
xr

m
xrm

mH
nmm eCeCexCxCxCCy +++++++= +

+
− .......... 1

1
12

321             (28) 
 
Case 3: Roots are complex 
If one pair of roots is complex, say βα ir +=1  and βα ir −=2 , 
where 
 1−=i  
then 
                                                        (29) ( ) ( ) xr

n
xrxixi

H
neCeCeCeCy ++++= −+ ......3

321
βαβα

Since   
 , and                                  (30a) xixe xi βββ sincos +=
                                     (30b) xixe xi βββ sincos −=−

then 
 ( ) ( ) xr

n
xrxx

H
neCeCxixeCxixeCy +++−++= .........sincossincos 3

321 ββββ αα  
             ( ) ( ) xr

n
xrxx neCeCxeCCixeCC +++−++= .........sincos      3

32121 ββ αα

               (31)                     ( ) xr
n

xrx neCeCxBxAe ++++= ........sincos      3
3ββα

 where   
  and 21 CCA +=
                               (32) )( 21 CCiB −=
Now, let us look at how the particular part of the solution is found.  Consider the general 
form of the ordinary differential equation 
           ( ) XykDkDkD n

n
n

n
n =++++ −

−
−

1
2

1
1 ..........                                      (33) 

The particular part of the solution  is that part of solution that gives Py X  when substituted 
for y  in the above equation, that is, 
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                     ( ) XykDkDkD P
n

n
n

n
n =++++ −

−
−

1
2

1
1 ......                           (34) 

 
Sample Case 1 
When , the particular part of the solution is of the form .  We can find axeX = axAe A  by 
substituting  in the left hand side of the differential equation and equating 
coefficients. 

axAey =

 
Example 1 
Solve   

 xey
dx
dy −=+ 23 ,  5)0( =y

Solution 

The homogeneous solution for the above equation is given by 
  ( ) 023 =+ yD
The characteristic equation for the above equation is given by 
   023 =+r
The solution to the equation is 
   666667.0−=r
  x

H Cey 666667.0−=
The particular part of the solution is of the form  xAe−

 ( ) xx
x

eAe
dx
Aed −−

−

=+ 23  

 xxx eAeAe −−− =+− 23  
  xx eAe −− =−
  1−=A
Hence the particular part of the solution is 
  x

P ey −−=
The complete solution is given by 
  PH yyy +=
  xx eCe −− −= 666667.0   
The constant  can be obtained by using the initial condition C 5)0( =y  
  ( ) 50 00666667.0 =−= −×− eCey
  51 =−C
  6=C
The complete solution is 
 xx eey −− −= 666667.06  
 
Example 2 
Solve   

 xey
dx
dy 5.132 −=+ ,  5)0( =y
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Solution 
The homogeneous solution for the above equation is given by 
  ( ) 032 =+ yD
The characteristic equation for the above equation is given by 
   032 =+r
The solution to the equation is 
   5.1−=r
  x

H Cey 5.1−=
Based on the forcing function of the ordinary differential equations, the particular part of the 
solution is of the form , but since that is part of the form of the homogeneous part of 
the solution, we need to choose the next independent solution, that is, 

xAe 5.1−

  x
P Axey 5.1−=

To find A , we substitute this solution in the ordinary differential equation as 

 ( ) xx
x

eAxe
dx

Axed 5.15.1
5.1

32 −−
−

=+  

  xxxx eAxeAxeAe 5.15.15.15.1 332 −−−− =+−
  xx eAe 5.15.12 −− =
  5.0=A
Hence the particular part of the solution is 
  x

P xey 5.15.0 −=
The complete solution is given by 
  PH yyy +=
  xx xeCe 5.15.1 5.0   −− +=
The constant  is obtained by using the initial condition C 5)0( =y . 
  ( ) 5)0(5.00 )0(5.1)0(5.1 =+= −− eCey
  50 =+C
  5=C
The complete solution is 
  xx xeey 5.15.1 5.05 −− +=
 
Sample Case 2  
When  
  or ,  )sin(axX = )cos(ax

)
the particular part of the solution is of the form  
 . cos()sin( axBaxA +
We can get and A B  by substituting )cos()sin( axBaxAy +=  in the left hand side of the 
differential equation and equating coefficients. 
 
Example 3         
Solve 
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 xy
dx
dy

dx
yd sin125.332 2

2

=++ ,  3)0(  ,5)0( === x
dx
dyy  

Solution 

The homogeneous equation is given by 
             0)125.332( 2 =++ yDD
The characteristic equation is  
  0125.332 2 =++ rr
The roots of the characteristic equation are 

 
22

125.32433 2

×
××−±−

=r  

 
4

2593   −±−
=  

 
4

163   −±−
=  

 
4

43   i±−
=  

  i±−= 75.0   
Therefore the homogeneous part of the solution is given by 
  )sincos( 21

75.0 xKxKey x
H += −

The particular part of the solution is of the form 
    

 

xBxAyP cossin +=

( ) ( ) xxBxAxBxA
dx
dxBxA

dx
d sin)cossin(125.3cossin3cossin2 2

2

=+++++  

 ( ) xxBxAxBxAxBxA
dx
d sin)cossin(125.3)sincos(3sincos2 =++−+−  

 xxBxAxBxAxBxA sin)cossin(125.3)sincos(3)cossin(2 =++−+−−  
 xxABxBA sincos)3125.1(sin)3125.1( =++−  
Equating coefficients of  and xsin xcos  on both sides, we get 
  13125.1 =− BA
  03125.1 =+ AB
Solving the above two simultaneous linear equations we get  
   109589.0=A
  292237.0−=B
Hence 
  xxyP cos292237.0sin109589.0 −=
The complete solution is given by 
  )cos292237.0sin109589.0()sincos( 21

75.0 xxxKxKey x −++= −

To find  and  we use the initial conditions 1K 2K

 3)0(  ,5)0( === x
dx
dyy  

From  we get 5)0( =y
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  ))0cos(292237.0)0sin(109589.0())0sin()0cos((5 21
)0(75.0 −++= − KKe

  292237.05 1 −= K
  292237.51 =K

xx

xKxKexKxKe
dx
dy xx

sin292237.0cos109589.0

)cossin()sincos(75.0 21
75.0

21
75.0

++

+−++−= −−

 

From  

 ,3)0( ==x
dx
dy  

we get 

            
)0sin(292237.0)0cos(109589.0

))0cos()0sin(( ))0sin()0cos((75.03 21
)0(75.0

21
)0(75.0

++
+−++−= −− KKeKKe

  109589.075.03 21 ++−= KK
  109589.0)292237.5(75.03 2 ++−= K
  859588.62 =K
The complete solution is 
  xxxxey x cos292237.0sin109589.0)sin859588.6cos292237.5(75.0 −++= −

 
Example 4 
Solve    

 )cos(125.362 2

2

xy
dx
dy

dx
yd

=++ ,  3)0(  ,5)0( === x
dx
dyy  

Solution 
The homogeneous part of the equations is given by 
                       0)125.362( 2 =++ yDD
The characteristic equation is given by 
  0125.362 2 =++ rr

            
)2(2

)125.3)(2(466 2 −±−
=r  

               
4

25366 −±−
=  

               
4

116 ±−
=  

                829156.05.1 ±−=
                329156.2,670844.0 −−=
Therefore, the homogeneous solution  is given by Hy
  xx

H eKeKy 329156.2
2

670845.0
1

−− +=
The particular part of the solution is of the form 
   xBxAyP cossin +=
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Substituting the particular part of the solution in the differential equation,  

 
xxBxA

xBxA
dx
dxBxA

dx
d

cos)cossin(125.3

)cossin(6)cossin(2 2

2

=++

+++  

 
xxBxA

xBxAxBxA
dx
d

cos)cossin(125.3

)sincos(6)sincos(2

=++

−+−
 

 
xxBxA

xBxAxBxA
cos)cossin(125.3

)sincos(6)cossin(2
=++

−+−−

 xxABxBA coscos)6125.1(sin)6125.1( =++−  
Equating coefficients of xcos  and  we get xsin

  
06125.1
16125.1

=−
=+

BA
AB

The solution to the above two simultaneous linear equations are 

  
0301887.0
161006.0

=
=

B
A

 Hence the particular part of the solution is 
  xxyP cos0301887.0sin161006.0 +=
 Therefore the complete solution is 
  PH yyy +=
  xxeKeKy xx cos0301887.0sin161006.0)( 329156.2

2
670845.0

1 +++= −−

Constants  and  can be determined using initial conditions.  From , 1K 2K 5)0( =y
 50301887.0)0( 21 =++= KKy  
           969811.40301887.0521 =−=+ KK  
Now 

 
xx

eKeK
dx
dy xx

sin0301887.0cos161006.0        

329156.2670845.0 )329156.2(
2

)670845.0(
1

−+

−−= −−

 

From 3)0( ==x
dx
dy  

 3161006.0329156.2670845.0 21 =+−− KK  
 161006.03329156.2670845.0 21 +−=+ KK  
 838994.2329156.2670845.0 21 −=+ KK  
We have two linear equations with two unknowns 
    969811.421 =+ KK
 838994.2329156.2670845.0 21 −=+ KK   
Solving the above two simultaneous linear equations, we get 
      692253.81 =K
  722442.32 −=K
The complete solution is 



08.01.12                                                        Chapter 08.01 
 

       
.cos0301887.0sin161006.0       

)722442.3692253.8( 329156.2670845.0

xx
eey xx

++
−= −−

 
Sample Case 3 
When  
  or ,  bxeX ax sin= bxeax cos
the particular part of the solution is of the form 

)cossin( bxBbxAeax + , 
we can get and A B by substituting  
  )cossin( bxBbxAey ax +=
in the left hand side of differential equation and equating coefficients. 
 
Example 5      
Solve 

     xey
dx
dy

dx
yd x sin125.352 2

2
−=++ , 3)0(  ,5)0( === x

dx
dyy  

Solution 
The homogeneous equation is given by 
              0)125.352( 2 =++ yDD
 The characteristic equation is given by 
  0125.352 2 =++ rr

 
)2(2

)125.3)(2(455 2 −±−
=r  

  
4

25255  −±−
=  

    
4

05 ±−
=  

     25.1,25.1 −−=
Since roots are repeated, the homogeneous solution  is given by Hy
  x

H exKKy )25.1(
21 )( −+=

The particular part of the solution is of the form 
  )cossin( xBxAey x

P += −

Substituting the particular part of the solution in the ordinary differential equation 
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xexBxAe

xBxAe
dx
dxBxAe

dx
d

xx

xx

sin)}cossin({125.3         

)}cossin({5)}cossin({2 2

2

−−

−−

=++

+++

 
xexBxAexBxAexBxAe

xBxAexBxAe
dx
d

xxxx

xx

sin)cossin(125.3)}sincos()cossin({5   

 )}sincos()cossin({2

−−−−

−−

=++−++−+

−++−

xexBxAexBxAexBxAe
xBxAexBxAexBxAexBxAe

xxxx

xxxx

sin)cossin(125.3)}sincos()cossin({5       
)}cossin()sincos()sincos()cossin({2

−−−−

−−−−

=++−++−+

+−−−−−+  

  xexBxAexBxAe xxx sin)sincos()cossin(875.1 −−− =−++−
 xxBxAxBxA sin)sincos()cossin(875.1 =−++−  
 xxBAxBA sincos)875.1(sin)875.1( =−++−  
Equating coefficients of xcos  and on both sides we get xsin
 0875.1 =− BA  
              1875.1 −=+ BA
Solving the above two simultaneous linear equations we get 
  and 415224.0−=A
  221453.0−=B
Hence,  
  )

)

cos221453.0sin415224.0( xxey x
P +−= −

Therefore complete solution is given by 
  PH yyy +=
  cos221453.0sin415224.0()( 25.1

21 xxeexKKy xx +−+= −−

Constants  and  can be determined using initial conditions,  1K 2K
From  we get ,5)0( =y
   5221453.01 =−K
  221453.51 =K
Now 

 
)cos221453.0sin415224.0()sin221453.0cos415224.0(     

25.125.1 25.1
2

25.1
2

25.1
1

xxexxe

eKxeKeK
dx
dy

xx

xxx

++−

−+−−=

−−

−−−

 

From  ,3)0( =
dx
dy  we get 

3)0cos(221453.0)0sin(415224.0())0sin(221453.0)0cos(415224.0(      

)0(25.125.1
00

)0(25.1
2

)0(25.1
2

)0(25.1
1

=++−−

+−− −−−

ee

eKeKeK

 3415224.0221453.025.1 21 =−++− KK  
  193771.325.1 21 =+− KK
  193771.3)221453.5(25.1 2 =+− K
  720582.92 =K
Substituting 
  and  221453.51 =K
   720582.92 =K
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in the solution, we get 
  )cos221453.0sin415224.0()720582.9221453.5( 25.1 xxeexy xx +−+= −−

 
The forms of the particular part of the solution for different right hand sides of ordinary 
differential equations are given below 
 

X  ( )xyP  
2

210 xaxaa ++  2
210 xbxbb ++  

axe  axAe  
)sin(bx  )cos()sin( bxBbxA +  

)sin(bxeax  ( ))cos()sin( bxBbxAeax +  

)cos(bx  )cos()sin( bxBbxA +  

)cos(bxeax  ( ))cos()sin( bxBbxAeax +  
 
Laplace Transforms 

If   is defined at all positive values of )(xfy = x , the Laplace transform denoted by  is 
given by 

)(sY

                                        (35) dxxfexfLsY sx )()}({)(
0
∫
∞

−==

where  is a parameter, which can be a real or complex number.  We can get back  by 
taking the inverse Laplace transform of . 

s )(xf
)(sY

                                          (36) )()}({1 xfsYL =−

Laplace transforms are very useful in solving differential equations. They give the solution 
directly without the necessity of evaluating arbitrary constants separately. 
 
The following are Laplace transforms of some elementary functions 

 s
L 1)1( =

  
            1

!)( += n
n

s
nxL , where  ....3,2,1,0=n

 
as

eL ax

−
=

1)(  

 22)(sin
as

aaxL
+

=  

 22)(cos
as

saxL
+

=  

 22)(sinh
as

aaxL
−

=  
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 22)(cosh
as

saxL
−

=                                          (37) 

The following are the inverse Laplace transforms of some common functions 

 111 =⎟
⎠
⎞

⎜
⎝
⎛−

s
L  

 axe
as

L =⎟
⎠
⎞

⎜
⎝
⎛

−
− 11  

 ( )!1
1 1

1

−
=⎟

⎠
⎞

⎜
⎝
⎛ −

−

n
x

s
L

n

n , where ......3,2,1=n  

 
( ) ( )!1

1 1
1

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−
−

n
xe

as
L

nax

n  

 ax
aas

L sin11
22

1 =⎟
⎠
⎞

⎜
⎝
⎛

+
−  

 ax
as

sL cos22
1 =⎟

⎠
⎞

⎜
⎝
⎛

+
−  

 ax
aas

L sinh11
22

1 =⎟
⎠
⎞

⎜
⎝
⎛

−
−  

 at
as

sL cosh22
1 =⎟

⎠
⎞

⎜
⎝
⎛

−
−  

 
( )

bxe
bbas

L ax sin11
22

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−  

 
( )

bxe
bas

asL ax cos
22

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−−  

 
( )

axx
aas

sL sin
2
1

222

1 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−                                                   (38)       

                         
Properties of Laplace transforms 

Linear property 
If  are constants and and  are functions of cba  , , ),( ),( xgxf )(xh x  then 
 ))(())(())(()]()()([ xhcLxgbLxfaLxchxbgxafL ++=++                          (39) 
Shifting property 
If 
                                         (40) )()}({ sYxfL =
then 
                              (41) )()}({ asYxfeL at −=
Using shifting property we get 
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 ( )
( ) 1

!
+−

= n
nax

as
nxeL ,   0≥n

 ( )
( ) 22sin

bas
bbxeL ax

+−
=              

 ( )
( ) 22cos

bas
asbxeL ax

+−
−

=  

 ( )
( ) 22sinh

bas
bbxeL ax

−−
=  

 ( )
( ) 22cosh

bas
asbxeL ax

−−
−

=                                         (42) 

Scaling property 
If  
                                          (43) )()}({ sYxfL =
then 

 ⎟
⎠
⎞

⎜
⎝
⎛=

a
sY

a
axfL 1)}({                                          (44) 

 
Laplace transforms of derivatives 

If the first n  derivatives of  are continuous then )(xf

                                                         (45) ∫
∞

−=
0

)()}({ dxxfexfL nsxn

Using integration by parts we get 

∫

∫
∞

−

∞∞

−−−−−

−−−−
−

−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−++−+

−−
=

0

00
1132

21

)()()1(                         

)()()1(......)()(
)()()(

)(

dxxfes

xfesxfes
xfesxfe

dxxfe

sxnn

sxnnnsx

nsxnsx
nsx

                               

                       

 ∫
∞

−−−−− +−−−−−=
0

13221 )()0(.............)0()0()0( dxxfesfsfssff sxnnnnn

                                    (46) )0(........)0()0()0()( 13221 fsfssffsYs nnnnn −−−− −−−−−=
 
Laplace transform technique to solve ordinary differential equations 

The following are steps to solve ordinary differential equations using the Laplace transform 
method 
(A) Take the Laplace transform of both sides of ordinary differential equations. 
(B) Express )(sY  as a function of s . 
(C) Take the inverse Laplace transform on both sides to get the solution. 

Let us solve Examples 1 through 4 using the Laplace transform method. 
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Example 6 
Solve  

 xey
dx
dy −=+ 23 ,  5)0( =y

Solution 
Taking the Laplace transform of both sides, we get 

            ( )xeLy
dx
dyL −=⎟

⎠
⎞

⎜
⎝
⎛ + 23  

 
1

1)(2)]0()([3
+

=+−
s

sYyssY  

Using the initial condition, 5)0( =y  we get 

 
1

1)(2]5)([3
+

=+−
s

sYssY  

 15
1

1)()23( +
+

=+
s

sYs  

 
1
1615)()23(

+
+

=+
s
ssYs  

 
)23)(1(

1615)(
++

+
=

ss
ssY  

Writing the expression for  in terms of partial fractions )(sY

 
231)23)(1(

1615
+

+
+

=
++

+
s
B

s
A

ss
s  

 
)23)(1(

23
)23)(1(

1615
++

+++
=

++
+

ss
BBsAAs

ss
s  

 BBsAAss +++=+ 231615  
Equating coefficients of  and  gives 1s 0s
  153 =+ BA
  162 =+ BA
The solution to the above two simultaneous linear equations is 
  1−=A
  18=B

 
23

18
1

1)(
+

+
+
−

=
ss

sY  

         
666667.0
6

1
1

+
+

+
−

=
ss

 

Taking the inverse Laplace transform on both sides 

 ⎟
⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
−

= −−−

666667.0
6

1
1)}({ 111

s
L

s
LsYL  

Since 
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 ate
as

L −− =⎟
⎠
⎞

⎜
⎝
⎛

+
11  

The solution is given by 
  xx eexy 666667.06)( −− +−=
 
Example 7 
Solve  

 xey
dx
dy 5.132 −=+ ,  5)0( =y

Solution 
Taking the Laplace transform of both sides, we get 

            ( )xeLy
dx
dyL 5.132 −=⎟

⎠
⎞

⎜
⎝
⎛ +  

 
5.1

1)(3)]0()([2
+

=+−
s

sYyssY  

Using the initial condition , we get 5)0( =y

 
5.1

1)(3]5)([2
+

=+−
s

sYssY  

 10
5.1

1)()32( +
+

=+
s

sYs  

 
5.1
1610)()32(

+
+

=+
s

ssYs  

 
)32)(5.1(

1610)(
++

+
=

ss
ssY  

         
)5.1)(5.1(2

1610
++

+
=

ss
s  

         2)5.1(2
1610

+
+

=
s

s  

                    2)5.1(
85

+
+

=
s

s  

Writing the expression for  in terms of partial fractions )(sY

 22 )5.1(5.1)5.1(
85

+
+

+
=

+
+

s
B

s
A

s
s  

 22 )5.1(
5.1

)5.1(
85

+
++

=
+
+

s
BAAs

s
s  

  BAAss ++=+ 5.185
Equating coefficients of  and  gives 1s 0s
  5=A
  85.1 =+ BA
The solution to the above two simultaneous linear equations is 
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  5=A
  5.0=B

 2)5.1(
5.0

5.1
5)(

+
+

+
=

ss
sY  

  
Taking the inverse Laplace transform on both sides 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
= −−−

2
111

)5.1(
5.0

5.1
5)}({

s
L

s
LsYL  

Since 

 axe
as

L −− =⎟
⎠
⎞

⎜
⎝
⎛

+
11  and axxe

as
L −− =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 2

1

)(
1  

The solution is given by 
  xx xeexy 5.15.1 5.05)( −− +=
 
Example 8 
Solve 

 xy
dx
dy

dx
yd sin125.332 2

2

=++ , 3)0(  ,5)0( === x
dx
dyy  

Solution 
Taking the Laplace transform of both sides 

 ( )xLy
dx
dy

dx
ydL sin125.332 2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++  

and knowing 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
ydL  ( ) ( ) ( )002 =−−= x

dx
dysysYs  

 ⎟
⎠
⎞

⎜
⎝
⎛

dx
dyL ( ) ( )0yssY −=  

 
1

1)(sin 2 +
=

s
xL     

we get         

 [ ]
1

1)(125.3)0()(3)0()0()(2 2
2

+
=+−+⎥⎦

⎤
⎢⎣
⎡ =−−

s
sYyssYx

dx
dysysYs  

 [ ] [ ]
1

1)(125.35)(335)(2 2
2

+
=+−+−−

s
sYssYssYs

 ( )[ ]
1

12110)(125.332 2 +
=−−++

s
ssYss  

 ( )[ ] 2110
1

1)(125.332 2 ++
+

=++ s
s

sYss  
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 [ ]
)1(

21101022)(125.332 2

23
2

+
+++

=++
s

ssssYss  

             ( )( )125.3321
22102110)( 22

23

+++
+++

=
sss

ssssY  

Writing the expression for  in terms of partial fractions )(sY

  ( ) ( ) ( )( )125.3321
22102110

1125.332 22

23

22 +++
+++

=
+
+

+
++
+

sss
sss

s
DCs

ss
BAs  

 
( )( )

( )( )125.3321
22102110          

1125.332
125.332125.332

22

23

22

22323

+++
+++

=

+++
+++++++++

sss
sss

sss
DDsDsCsCsCsBBsAsAs

 

 

( ) ( ) ( ) ( )
( )( )

( )( )125.3321
22102110          

125.3321
125.33125.3232

22

23

22

23

+++
+++

=

+++
+++++++++

sss
sss

sss
DBsDCAsDCBsCA

 

Equating terms of ,  and  gives 3s 12  , ss 0s
  102 =+ CA
  2123 =++ DCB
             103125.3 =++ DCA
             22125.3 =+ DB
The solution to the above four simultaneous linear equations is  
  584474.10=A
             657534.21=B
             292237.0−=C
              109589.0=D
Hence 

            
1

109589.0292237.0
125.332
657534.21584474.10)( 22 +

+−
+

++
+

=
s

s
ss

ssY  

            ( ) }1)75.0{(2}1)5625.05.1{(2125.332 222 ++=+++=++ sssss  

             
1

109589.0292237.0
}1)75.0{(2

719179.13)75.0(584474.10)( 22 +
+−

+
++
++

=
s

s
s
ssY  

              
)1(

109589.0
)1(

292237.0
}1)75.0{(

859589.6
}1)75.0{(

)75.0(292237.5       2222 +
+

+
−

++
+

++
+

=
ss

s
ss

s  

Taking the inverse Laplace transform of both sides 
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−−−

1
109589.0

1
292237.0              

1)75.0{(
859589.6

}1)75.0{(
)75.0(292237.5)}({

2
1

2
1
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1
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292237.0             
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Since 

 
( )

bxe
bas

asL ax cos
22

1 −− =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
+   

 
( )

bxe
bas

bL ax sin
22

1 −− =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
 

 ax
as

L sin1
22

1 =⎟
⎠
⎞

⎜
⎝
⎛

+
−  

 ax
as

sL cos22
1 =⎟

⎠
⎞

⎜
⎝
⎛

+
−  

The complete solution is 

  
xx

xexexy xx

sin109589.0cos292237.0          
sin8595859.6cos292237.5)( 75.075.0

+−
+= −−

   ( ) xxxxe x sin109589.0cos292237.0sin859589.6cos292237.5       75.0 +−+= −

 
Example 9 
Solve 

 xy
dx
dy

dx
yd cos125.362 2

2

=++ ,  3)0(  ,5)0( === x
dx
dyy  

Solution 
Taking the Laplace transform of both sides 

 ( )xLy
dx
dy

dx
ydL cos125.362 2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++  

and knowing 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
ydL  ( ) ( ) ( )002 =−−= x

dx
dysysYs  

 ⎟
⎠
⎞

⎜
⎝
⎛

dx
dyL ( ) ( )0yssY −=  

 
1

)(cos 2 +
=

s
sxL  

we get 

 [ ]
1

)(125.3)0()(6)0()0()(2 2
2

+
=+−+⎥⎦

⎤
⎢⎣
⎡ =−−

s
ssYyssYx

dx
dysysYs    

 [ ] [ ]
1

)(125.35)(635)(2 2
2

+
=+−+−−

s
ssYssYssYs  
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[ ] 3610

1
)(125.3)62( 2 ++

+
=++ s

s
ssYss

 

 [ ]
1

36111036)(125.362 2

23
2

+
+++

=++
s

ssssYss  

 ( )( )125.3621
36113610)( 22

23

+++
+++

=
sss

ssssY  

Writing the expression for  in terms of partial fractions )(sY

 ( ) ( ) ( )( )125.3621
36113610

1125.362 22

23

22 +++
+++

=
+
+

+
++
+

sss
sss

s
DCs

ss
BAs  

  
( )( )

( )( )125.3621
36113610          

1125.362
125.362125.362

22

23

22

22323

+++
+++

=

+++
+++++++++

sss
sss

sss
DDsDsCsCsCsBBsAsAs

 

  

( ) ( ) ( ) ( )
( )( )

( )( )125.3621
36113610          

125.3621
125.36125.3262

22

23

22

23

+++
+++

=

+++
+++++++++

sss
sss

sss
DBsDCAsDCBsCA

 

Equating terms of ,  and  gives 3s 12  , ss 0s
  102 =+ CA
  3626 =++ DCB
  116125.3 =++ DCA
  36125.3 =+ DB
The solution to the above four simultaneous linear equations is  
  939622.9=A
  496855.35=B
  0301886.0=C
  161006.0=D
Then                      

 
1

161006.00301886.0
125.362
496855.35939622.9)( 22 +

+
+

++
+

=
s

s
ss

ssY  

 ( ) }829156.0)5.1{(2}6875.0)25.23{(2125.362 2222 −+=−++=++ sssss  

 
1

161006.00301886.0
}829156.0)5.1{(2

587422.20)5.1(939622.9)( 222 +
+

+
−+

++
=

s
s

s
ssY  

 

1
161006.0

1
0301886.0            

}829156.0)5.1{(
293711.10

}829156.0)5.1{(
)5.1(969811.4        

22

2222

+
+

+
+

−+
+

−+
+

=

ss
s

ss
s

 

Taking the inverse Laplace transform on both sides 
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1
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s
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1161006.0

)1(
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s
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Since 

 
( )

bxe
bas

asL ax cosh
22

1 −− =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+
+   

 
( )

bxe
bbas

L ax sinh11
22

1 −− =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+
 

 ax
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L sin11
22
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⎠
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⎜
⎝
⎛

+
−  

 ax
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sL cos22
1 =⎟

⎠
⎞

⎜
⎝
⎛

+
−  

The complete solution is 

 
xx

xexexy xx

sin161006.0cos0301886.0           

)829156.0sinh(
829156.0
293711.10)829156.0cosh(969811.4)( 5.15.1

++

+= −−

  

 

xx

eeeee
xxxx

x

sin161006.0cos030188.0           

2
414685.12

2
969811.4        

829156.0829156.0829156.0829156.0
5.1

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

−−
−

 

 

 ( )
x

xeee xxx

sin161006.0          
cos0301886.0722437.3692248.8       829156.0829156.05.1

+
+−= −−

 

 
Example 10 

Solve 

 xey
dx
dy

dx
yd x sin125.352 2

2
−=++ , 3)0(  ,5)0( === x

dx
dyy  

Solution 
Taking the Laplace transform of both sides 

 ( )xeLy
dx
dy

dx
ydL x sin125.352 2

2
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++  

knowing 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
ydL  ( ) ( ) ( )002 =−−= x

dx
dysysYs  

 ⎟
⎠
⎞

⎜
⎝
⎛

dx
dyL ( ) ( )0yssY −=  

 
1)1(

1)sin( 2 ++
=−

s
xeL x  

we get 

 

[ ]

[ ] [ ]
1)1(

1)(125.35)(535)(2

1)1(
1)(125.3)0()(5)0()0()(2

2
2

2
2

++
=+−+−−

++
=+−+⎥⎦

⎤
⎢⎣
⎡ =−−

s
sYssYssYs

s
sYyssYx

dx
dysysYs

 
 ( )[ ]

1)1(
13110)(125.352 2 ++

=−−++
s

ssYss  

            [ ] 3110
1)1(

1)(125.3)52( 2 ++
++

=++ s
s

sYss   

            [ ]
22

51821063)(125.352 2

23
2

++
+++

=++
ss

ssssYss  

             ( )( )125.35222
63825110)( 22

23

++++
+++

=
ssss
ssssY  

             
Writing the expression for  in terms of partial fractions )(sY

 ( )( )125.35222
63825110

22125.352 22

23

22 ++++
+++

=
++

+
+

++
+

ssss
sss

ss
DCs

ss
BAs  

( )( )

( )( )125.35222
63825110            

22125.352
2222125.352125.352

22

23

22

223223

++++
+++

=

++++
+++++++++++

ssss
sss

ssss
BBsBsAsAsAsDDsDsCsCsCs

 
( ) ( ) ( ) ( )

( )( )

( )( )125.35222
63825110            

125.35222
2125.3225125.32252

22

23

22

23

++++
+++

=

++++
+++++++++++

ssss
sss

ssss
BDsBADCsBADCsAC

 

Equating terms of ,  and  gives four simultaneous linear equations 3s 12  , ss 0s
  102 =+ AC
             51225 =+++ BADC
             82225125.3 =+++ BADC
             632125.3 =+ BD
The solution to the above four simultaneous linear equations is  
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  442906.10=A
  494809.32=B
  221453.0−=C
  636678.0−=D
Then  

 
22
636678.0221453.0

125.352
494809.32442906.10)( 22 ++

−−
+

++
+

=
ss

s
ss

ssY  

            ( ) 222 )25.1(2)}5625.15.2{(2125.352 +=++=++ sssss  
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+
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+
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Taking the inverse Laplace transform on both sides 
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Since 
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The complete solution is 
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cos221453.0720588.9221453.5)( 25.125.1
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−

−+=

  ( ) )sin415225.0cos221453.0(720588.9221453.5        25.1 xxexe xx −−++= −
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Chapter 08.02  
Euler’s Method for Ordinary Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. develop Euler’s Method for solving ordinary differential equations, 
2. determine how the step size affects the accuracy of a solution, 
3. derive Euler’s formula from Taylor series, and 
4. use Euler’s method to find approximate values of integrals. 

 
What is Euler’s method? 
Euler’s method is a numerical technique to solve ordinary differential equations of the form 

 ( ) ( ) 00,, yyyxf
dx
dy

==                                (1) 

So only first order ordinary differential equations can be solved by using Euler’s method.  In 
another chapter we will discuss how Euler’s method is used to solve higher order ordinary 
differential equations or coupled (simultaneous) differential equations.  How does one write a 
first order differential equation in the above form? 
 
Example 1  
Rewrite 

 ( ) 50,3.12 ==+ − yey
dx
dy x  

in  

0)0(  ),,( yyyxf
dx
dy

==  form. 

 
Solution 

 ( ) 50,3.12 ==+ − yey
dx
dy x  

 ( ) 50,23.1 =−= − yye
dx
dy x  

In this case 
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 ( ) yeyxf x 23.1, −= −  
 
Example 2 
Rewrite 

 ( ) 50  ),3sin(222 ==+ yxyx
dx
dye y  

in  

0)0(  ),,( yyyxf
dx
dy

==  form. 

 
Solution 

 ( ) 50  ),3sin(222 ==+ yxyx
dx
dye y  

 ( ) 50  ,)3sin(2 22

=
−

= y
e

yxx
dx
dy

y  

In this case 

 ( ) ye
yxxyxf

22)3sin(2, −
=  

 
Derivation of Euler’s method 

At 0=x , we are given the value of .0yy =   Let us call 0=x  as 0x .  Now since we know 
the slope of y  with respect to x , that is, ( )yxf , , then at 0xx = , the slope is ( )00 , yxf .  
Both 0x  and 0y  are known from the initial condition ( ) 00 yxy = . 
 

 
Figure 1  Graphical interpretation of the first step of Euler’s method. 
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So the slope at 0xx =  as shown in Figure 1 is 

 Slope 
Run
Rise

=  

           
01

01

xx
yy

−
−

=  

           ( )00 , yxf=  
From here 
 ( )( )010001 , xxyxfyy −+=  
Calling 01 xx − the step size h , we get 
 ( )hyxfyy 0001 ,+=                                              (2) 
One can now use the value of 1y  (an approximate value of y  at 1xx = ) to calculate 2y , and 
that would be the predicted value at 2x , given by 
 ( )hyxfyy 1112 ,+=  
 hxx += 12  
Based on the above equations, if we now know the value of iyy =  at ix , then 
 ( )hyxfyy iiii ,1 +=+                                                         (3) 
This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some 
books, it is also called the Euler-Cauchy method. 

 
Figure 2 General graphical interpretation of Euler’s method.  
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Example 3 
A ball at K1200  is allowed to cool down in air at an ambient temperature of K300 .  
Assuming heat is lost only due to radiation, the differential equation for the temperature of 
the ball is given by  

 ( ) ( ) K12000  ,1081102067.2 8412 =×−×−= − θθθ
dt
d    

where θ  is in K  and t  in seconds.  Find the temperature at 480=t  seconds using Euler’s 
method.  Assume a step size of  240=h  seconds. 
Solution 

 ( )8412 1081102067.2 ×−×−= − θθ
dt
d  

 ( ) ( )8412 1081102067.2, ×−×−= − θθtf  
Per Equation (3), Euler’s method reduces to  
 ( )htf iiii θθθ ,1 +=+  
For 0=i , 00 =t , 12000 =θ  
 ( )htf 0001 ,θθθ +=  
      ( ) 2401200,01200 ×+= f  
      ( )( ) 24010811200102067.21200 8412 ××−×−+= −  
      ( ) 2405579.41200 ×−+=  
      09.106= K 

1θ  is the approximate temperature at 
 httt +== 01 2400 += 240=  
 ( ) 09.1062401 ≈= θθ K 
For 1=i , 2401 =t , 09.1061 =θ  

 ( )htf 1112 ,θθθ +=  
      ( ) 24009.106,24009.106 ×+= f  
      ( )( ) 240108109.106102067.209.106 8412 ××−×−+= −  
      ( ) 240017595.009.106 ×+=  
      32.110= K 

2θ  is the approximate temperature at  

 httt +== 12 240240+= 480=  
 ( ) 32.1104802 ≈= θθ K 
Figure 3 compares the exact solution with the numerical solution from Euler’s method for the 
step size of 240=h . 
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Figure 3  Comparing the exact solution and Euler’s method. 

 
The problem was solved again using a smaller step size.  The results are given below in 
Table 1. 
 
                     Table 1  Temperature at 480 seconds as a function of step size, h . 

Step size, h  ( )480θ  tE  %|| t∈  
480 
240 
120 
60 
30 

-987.81 
110.32 
546.77 
614.97 
632.77 

1635.4 
537.26 
100.80 
32.607 
14.806 

252.54 
82.964 
15.566 
5.0352 
2.2864 

Figure 4 shows how the temperature varies as a function of time for different step sizes. 
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Figure 4  Comparison of Euler’s method with the exact solution 
 for different step sizes. 
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The values of the calculated temperature at 480=t s as a function of step size are plotted in 
Figure 5. 
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              Figure 5  Effect of step size in Euler’s method. 

 
 
The exact solution of the ordinary differential equation is given by the solution of a non-
linear equation as 

( ) 9282.21022067.010333.0tan8519.1
300
300ln92593.0 321 −×−=×−

+
− −−− tθ

θ
θ           (4) 

The solution to this nonlinear equation is 
 57.647=θ K 
It can be seen that Euler’s method has large errors.  This can be illustrated using the Taylor 
series. 

     ( ) ( ) ( ) ...
!3

1
!2

1 3
1

,
3

3
2

1
,

2

2

1
,

1 +−+−+−+= ++++ ii
yx

ii
yx

ii
yx

ii xx
dx

ydxx
dx

ydxx
dx
dyyy

iiiiii

             (5) 

( ) ( ) ...),(''
!3

1),('
!2

1))(,( 3
1

2
11 +−+−+−+= +++ iiiiiiiiiiiii xxyxfxxyxfxxyxfy      (6) 

As you can see the first two terms of the Taylor series 
 ( )hyxfyy iiii ,1 +=+  
are Euler’s method. 
The true error in the approximation is given by 

 ( ) ( )
...

!3
,

!2
, 32 +

′′
+

′
= hyxfhyxfE iiii

t                                                                           (7) 

The true error hence is approximately proportional to the square of the step size, that is, as 
the step size is halved, the true error gets approximately quartered.  However from Table 1, 
we see that as the step size gets halved, the true error only gets approximately halved.  This is 
because the true error, being proportioned to the square of the step size, is the local truncation 



Euler’s Method    08.02.7
  

error, that is, error from one point to the next.  The global truncation error is however 
proportional only to the step size as the error keeps propagating from one point to another. 
 
Can one solve a definite integral using numerical methods such as Euler’s method of 
solving ordinary differential equations? 
Let us suppose you want to find the integral of a function )(xf  

 ( )∫=
b

a

dxxfI . 

Both fundamental theorems of calculus would be used to set up the problem so as to solve it 
as an ordinary differential equation. 
The first fundamental theorem of calculus states that if f  is a continuous function in the 
interval [a,b], and F  is the antiderivative of f , then 

( ) ( ) ( )aFbFdxxf
b

a

−=∫  

The second fundamental theorem of calculus states that if f  is a continuous function in the 
open interval D , and a  is a point in the interval D , and if  

( ) ( )∫=
x

a

dttfxF  

then  
( ) ( )xfxF =′  

at each point in D .  

Asked to find  ( )∫
b

a

dxxf , we can rewrite the integral as the solution of an ordinary 

differential equation (here is where we are using the second fundamental theorem of 
calculus) 

 ( ) ,0)(  , == ayxf
dx
dy   

where then ( )by  (here is where we are using the first fundamental theorem of calculus) will 

give the value of the integral ( )∫
b

a

dxxf .   

 
Example 4 
Find an approximate value of  

 ∫
8

5

36 dxx  

using Euler’s method of solving an ordinary differential equation.  Use a step size of 5.1=h . 
Solution 

Given ∫
8

5

36 dxx , we can rewrite the integral as the solution of an ordinary differential equation 
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 ( ) 05,6 3 == yx
dx
dy  

where ( )8y  will give the value of the integral ∫
8

5

36 dxx .   

 ( )yxfx
dx
dy ,6 3 == , ( ) 05 =y  

The Euler’s method equation is 
 ( )hyxfyy iiii ,1 +=+  

 
Step 1  

0,5,0 00 === yxi  
           5.1=h  

          
5.6    

5.15    
01

=
+=
+= hxx

 

         ( )hyxfyy 0001 ,+=  

   ( ) 5.10,50 ×+= f  
   ( ) 5.1560 3 ××+=  
   1125=  
   )5.6(y≈  
  

            
Step 2 

1125,5.6,1 11 === yxi  

         
8     

5.15.6     
12

=
+=
+= hxx

 

         ( )hyxfyy 1112 ,+=  

   ( ) 5.11125,5.61125 ×+= f  
             ( ) 5.15.661125 3 ××+=  
   625.3596=  
   )8(y≈  
Hence 

 )5()8(6
8

5

3 yydxx −=∫  

              0625.3596 −≈  
                 625.3596=  
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Chapter 08.03  
Runge-Kutta 2nd Order Method for  
Ordinary Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. understand the Runge-Kutta 2nd order method for ordinary differential equations and 
how to use it to solve problems. 

 
What is the Runge-Kutta 2nd order method? 
The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary 
differential equation of the form 

 ( ) ( ) 00,, yyyxf
dx
dy

==  

Only first order ordinary differential equations can be solved by using the Runge-Kutta 2nd 
order method.  In other sections, we will discuss how the Euler and Runge-Kutta methods are 
used to solve higher order ordinary differential equations or coupled (simultaneous) 
differential equations. 
How does one write a first order differential equation in the above form? 
 
Example 1  
Rewrite 

 ( ) 50,3.12 ==+ − yey
dx
dy x  

in 

 0)0(  ),,( yyyxf
dx
dy

==  form. 

 
Solution 

 ( ) 50,3.12 ==+ − yey
dx
dy x  

 ( ) 50,23.1 =−= − yye
dx
dy x  

In this case 



08.03.2                                                        Chapter 08.03 
 

 ( ) yeyxf x 23.1, −= −  
Example 2 
Rewrite 

 ( ) 50  ),3sin(222 ==+ yxyx
dx
dye y  

in  

0)0(  ),,( yyyxf
dx
dy

==  form. 

 
Solution 

 ( ) 50  ),3sin(222 ==+ yxyx
dx
dye y  

 ( ) 50  ,)3sin(2 22

=
−

= y
e

yxx
dx
dy

y  

In this case 

 ( ) ye
yxxyxf

22)3sin(2, −
=  

 
Runge-Kutta 2nd order method 
Euler’s method is given by 
 ( )hyxfyy iiii ,1 +=+                                         (1) 
where 
 00 =x  
 )( 00 xyy =  
 ii xxh −= +1  
To understand the Runge-Kutta 2nd order method, we need to derive Euler’s method from 
the Taylor series. 

 ( ) ( ) ( ) ...
!3

1
!2

1 3
1

,
3

3
2

1
,

2

2

1
,

1 +−+−+−+= ++++ ii
yx

ii
yx

ii
yx

ii xx
dx

ydxx
dx

ydxx
dx
dyyy

iiiiii

 

    ( ) ( ) ( ) ...),(''
!3

1),('
!2

1),( 3
1

2
11 +−+−+−+= +++ iiiiiiiiiiiii xxyxfxxyxfxxyxfy  (2) 

As you can see the first two terms of the Taylor series 
 ( )hyxfyy iiii ,1 +=+  
are Euler’s method and hence can be considered to be the Runge-Kutta 1st order method. 
The true error in the approximation is given by 

 ( ) ( )
...

!3
,

!2
, 32 +

′′
+

′
= hyxfhyxfE iiii

t                                                                           (3) 

So what would a 2nd order method formula look like.  It would include one more term of the 
Taylor series as follows. 
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 ( ) ( ) 2
1 ,

!2
1, hyxfhyxfyy iiiiii ′++=+                                         (4) 

Let us take a generic example of a first order ordinary differential equation 

 ( ) 50,32 =−= − yye
dx
dy x   

 ( ) yeyxf x 3, 2 −= −  
Now since y is a function of x, 

 ( ) ( ) ( )
dx
dy

y
yxf

x
yxfyxf

∂
∂

+
∂

∂
=′ ,,,                                                                                  (5) 

  ( ) ( )[ ]( )yeye
y

ye
x

xxx 333 222 −−
∂
∂

+−
∂
∂

= −−−  

  ( )yee xx 3)3(2 22 −−+−= −−  
  ye x 95 2 +−= −  
The 2nd order formula for the above example would be 

 ( ) ( ) 2
1 ,

!2
1, hyxfhyxfyy iiiiii ′++=+  

 ( ) ( ) 222 95
!2

13 hyehyey i
x

i
x

i
ii +−+−+= −−  

However, we already see the difficulty of having to find ( )yxf ,′  in the above method.  What 
Runge and Kutta did was write the 2nd order method as 
 ( )hkakayy ii 22111 ++=+                                        (6) 
where 
 ( )ii yxfk ,1 =  
 ( )hkqyhpxfk ii 11112 , ++=                                (7) 
This form allows one to take advantage of the 2nd order method without having to 
calculate ( )yxf ,′ . 
 So how do we find the unknowns 1a , 2a , 1p  and 11q . Without proof (see Appendix 
for proof), equating Equation (4) and (6) , gives three equations. 
 121 =+ aa  

 
2
1

12 =pa  

 
2
1

112 =qa  

Since we have 3 equations and 4 unknowns, we can assume the value of one of the 
unknowns.  The other three will then be determined from the three equations.  Generally the 
value of 2a  is chosen to evaluate the other three constants.  The three values generally used 

for 2a  are 
2
1 , 1 and 

3
2 , and are known as Heun’s Method, the midpoint method and 

Ralston’s method, respectively. 
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Here 

Heun’s Method 

2
1

2 =a  is chosen, giving 

 
2
1

1 =a  

 11 =p  
 111 =q  
resulting in 

 hkkyy ii 





 ++=+ 211 2

1
2
1                                                                                            (8) 

where 
 ( )ii yxfk ,1 =                                                                                                              (9a) 
 ( )hkyhxfk ii 12 , ++=                                                                                             (9b) 
This method is graphically explained in Figure 1. 
 

 
Figure 1  Runge-Kutta 2nd order method  (Heun’s method). 

 

Here 
Midpoint Method 

12 =a  is chosen, giving 
 01 =a  

 
2
1

1 =p  

 
2
1

11 =q  

resulting in 
 hkyy ii 21 +=+                                                                                                           (10) 
where 

xi xi+1 
x 

y 

  1+iy   predicted 

 yi 

( )ii yxfSlope ,=  

( )hkyhxfSlope ii 1, ++=  

( ) ( )[ ]iiii yxfhkyhxfSlopeAverage ,,
2
1 1 +++=  
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 ( )ii yxfk ,1 =                                                                                                            (11a) 

 





 ++= hkyhxfk ii 12 2

1,
2
1                                                                                     (11b) 

Here 

Ralston’s Method 

3
2

2 =a  is chosen, giving 

 
3
1

1 =a  

 
4
3

1 =p  

 
4
3

11 =q  

resulting in 

 hkkyy ii 





 ++=+ 211 3

2
3
1                                                                                        (12) 

where 
 ( )ii yxfk ,1 =                                                                                                            (13a) 

 





 ++= hkyhxfk ii 12 4

3,
4
3                                                                                     (13b) 

 
Example 3 
A ball at 1200K is allowed to cool down in air at an ambient temperature of 300 K.  
Assuming heat is lost only due to radiation, the differential equation for the temperature of 
the ball is given by  

 
)1081( 102067.2 8412- ×−×−= θθ

dt
d

   
where θ  is in K and t  in seconds.  Find the temperature at 480=t  seconds using Runge-
Kutta 2nd order method.  Assume a step size of  240=h  seconds. 
 
Solution 

 ( )8412 1081102067.2 ×−×−= − θθ
dt
d  

 ( ) ( )8412 1081102067.2, ×−×−= − θθtf  
Per Heun’s method given by Equations (8) and (9) 

 
hkkii 





 ++=+ 211 2

1
2
1θθ

 
 ( )iitfk θ,1 =  
 ( )hkhtfk ii 12 , ++= θ  
 1200)0(,0,0 00 ==== θθti  
 ( )otfk θ,01 =  
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                 ( )1200,0f=  

      ( )8412 10811200102067.2 ×−×−= −
 

      5579.4−=  
 ( )hkhtfk 1002 , ++= θ  
      ( )( )2405579.41200,2400 −++= f  
      ( )09.106,240f=  
                 ( )8412 108109.106102067.2 ×−×−= −    
                 017595.0=  

 hkk 





 ++= 2101 2

1
2
1θθ  

      ( ) ( ) 240017595.0
2
15579.4

2
11200 






 +−+=  

      ( )2402702.21200 −+=  
      16.655= K 
 K16.655,2402400,1 101 ==+=+== θhtti  

 ( )111 ,θtfk =  
      ( )16.655,240f=  
      ( )8412 108116.655102067.2 ×−×−= −

 
      38869.0−=  
 ( )hkhtfk 1112 , ++= θ  
     ( )( )24038869.016.655,240240 −++= f  

     ( )87.561,480f=  
     ( )8412 108187.561102067.2 ×−×−= −

 
                20206.0−=  

 
hkk 





 ++= 2112 2

1
2
1θθ

 

      
( ) ( ) 24020206.0

2
138869.0

2
116.655 






 −+−+=

 
      ( )24029538.016.655 −+=  
                 27.584= K 
 ( ) 27.5844802 == θθ K 
The results from Heun’s method are compared with exact results in Figure 2. 
The exact solution of the ordinary differential equation is given by the solution of a non-
linear equation as 

 ( ) 9282.21022067.00033333.0tan8519.1
300
300ln92593.0 31 −×−=−

+
− −− tθ

θ
θ  

The solution to this nonlinear equation at 480=t s is 
 57.647)480( =θ K 
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Figure 2  Heun’s method results for different step sizes. 

 
Using a smaller step size would increase the accuracy of the result as given in Table 1 and 
Figure 3 below. 
 
                                     Table 1  Effect of step size for Heun’s method 

Step size, h  ( )480θ  tE  %t∈  
480 
240 
120 
60 
30 

-393.87 
584.27 
651.35 
649.91 
648.21 

1041.4 
63.304 
-3.7762 
-2.3406 
-0.63219 

160.82 
9.7756 
0.58313 
0.36145 
0.097625 
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Figure 3  Effect of step size in Heun’s method. 
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In Table 2, Euler’s method and the Runge-Kutta 2nd order method results are shown as a 
function of step size, 
 
                        Table 2  Comparison of Euler and the Runge-Kutta methods 

Step size, 
h  

)480(θ  
Euler Heun Midpoint Ralston 

480 
240 
120 
  60 
  30 

-987.84 
110.32 
546.77 
614.97 
632.77 

-393.87 
584.27 
651.35 
649.91 
648.21 

1208.4 
976.87 
690.20 
654.85 
649.02 

449.78 
690.01 
667.71 
652.25 
648.61 

 
while in Figure 4, the comparison is shown over the range of time. 
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Figure 4 Comparison of Euler and Runge Kutta methods with exact  
results over time. 

 

 
How do these three methods compare with results obtained if we found ( )yxf ,′  
directly? 
Of course, we know that since we are including the first three terms in the series, if the 
solution is a polynomial of order two or less (that is, quadratic, linear or constant), any of the 
three methods are exact.  But for any other case the results will be different. 
 Let us take the example of  

  ( ) 50,32 =−= − yye
dx
dy x . 

If we directly find ( )yxf ,′ , the first three terms of the Taylor series gives 
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 ( ) ( ) 2
1 ,

!2
1, hyxfhyxfyy iiiiii ′++=+  

where 
 ( ) yeyxf x 3, 2 −= −  
 ( ) yeyxf x 95, 2 +−=′ −  
For a step size of 2.0=h , using Heun’s method, we find  
 ( ) 0930.16.0 =y  
The exact solution 

 ( ) xx eexy 32 4 −− +=  
gives 
 ( ) ( ) ( )6.036.02 46.0 −− += eey  
           96239.0=  
Then the absolute relative true error is 

 100
96239.0

0930.196239.0
×

−
=∈t  

       %571.13=  
For the same problem, the results from Euler’s method and the three Runge-Kutta methods 
are given in Table 3. 
 
           Table 3  Comparison of Euler’s and Runge-Kutta 2nd order methods 

 y(0.6) 
Exact Euler Direct 2nd Heun Midpoint Ralston 

Value 0.96239 0.4955 1.0930 1.1012 1.0974 1.0994 
t∈  %  48.514 13.571 14.423 14.029 14.236 

 
 
Appendix A  
How do we get the 2nd order Runge-Kutta method equations? 
We wrote the 2nd order Runge-Kutta equations without proof to solve 

 ( )yxf
dx
dy ,= , ( ) 00 yy =                                                                                   (A.1) 

as 
 ( )hkakayy ii 22111 ++=+                                                                                   (A.2) 
where 
 ( )ii yxfk ,1 =                                                                                   (A.3a)
  
 ( )hkqyhpxfk ii 11112 , ++=                                                                                 (A.3b) 
and 
 121 =+ aa  

 
2
1

22 =pa  
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2
1

112 =qa                                                                                     (A.4) 

The advantage of using 2nd order Runge-Kutta method equations is based on not having to 
find the derivative of ( )yxf ,  symbolically in the ordinary differential equation 
 
So how do we get the above three Equations (A.4)?  This is the question that is answered in 
this Appendix. 
 
Writing out the first three terms of Taylor series are 

 ( )32
2

2

1 !2
1 hOh

dx
ydh

dx
dyyy

iiii yxyx
ii +++=+                                                           (A.5) 

where 

 ii xxh −= +1  
Since 

 
( )yxf

dx
dy ,=

 
we can rewrite the Taylor series as 

 ( ) ( ) ( )32
1 ,

!2
1, hOhyxfhyxfyy iiiiii +′++=+                                                        (A.6) 

Now 

 ( ) ( ) ( )
dx
dy

y
yxf

x
yxfyxf

∂
∂

+
∂

∂
=′ ,,, .                                                                      (A.7) 

Hence 

 
( ) ( )32

,,,
1 !2

1, hOh
dx
dy

y
f

x
fhyxfyy

iiiiii yxyxyx
iiii +














×

∂
∂

+
∂
∂

++=+

 

        ( ) ( ) ( )32

,

2

,

,
2
1

2
1, hOhyxf

y
fh

x
fhyxfy ii

yxyx
iii

iiii

+
∂
∂

+
∂
∂

++=                        (A.8) 

Now the term used in the Runge-Kutta 2nd order method for 2k  can be written as a Taylor 
series of two variables with the first three terms as 

 ( )hkqyhpxfk ii 11112 , ++=  

      ( ) ( )2

,
111

,
1, hO

y
fhkq

x
fhpyxf

iiii yxyx
ii +

∂
∂

+
∂
∂

+=                                                 (A.9) 

Hence 

 ( )hkakayy ii 22111 ++=+  

        ( ) ( ) ( ) hhO
y
fhkq

x
fhpyxfayxfay

iiii yxyx
iiiii 


























+
∂
∂

+
∂
∂

+++= 2

,
111

,
121 ,,  

        ( ) ( ) ( ) ( )3

,

2
112

,

2
1221 ,, hO

y
fhyxfqa

x
fhpayxhfaay

iiii yx
ii

yx
iii +

∂
∂

+
∂
∂

+++=   
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                  (A.10) 
Equating the terms in Equation (A.8) and Equation (A.10), we get 
 121 =+ aa  

 2
1

12 =pa
 

 2
1

112 =qa
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Chapter 08.04  
Runge-Kutta 4th Order Method for  
Ordinary Differential Equations 
 
 
 
 
 

After reading this chapter, you should be able to 
1. develop Runge-Kutta 4th order method for solving ordinary differential equations, 
2. find the effect size of step size has on the solution, 
3. know the formulas for other versions of the Runge-Kutta 4th order method 

 
What is the Runge-Kutta 4th order method? 
Runge-Kutta 4th order method is a numerical technique used to solve ordinary differential 
equation of the form 

 ( ) ( ) 00,, yyyxf
dx
dy

==  

So only first order ordinary differential equations can be solved by using the Runge-Kutta 4th 

order method.  In other sections, we have discussed how Euler and Runge-Kutta methods are 
used to solve higher order ordinary differential equations or coupled (simultaneous) 
differential equations. 
  
How does one write a first order differential equation in the above form? 
 
Example 1  
Rewrite 

 ( ) 50,3.12 ==+ − yey
dx
dy x  

in  

0)0(  ),,( yyyxf
dx
dy

==  form. 
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Solution 

 ( ) 50,3.12 ==+ − yey
dx
dy x  

 ( ) 50,23.1 =−= − yye
dx
dy x  

In this case 
 ( ) yeyxf x 23.1, −= −  
 
Example 2 
Rewrite 

 ( ) 50  ),3sin(222 ==+ yxyx
dx
dye y  

in  

0)0(  ),,( yyyxf
dx
dy

==  form. 

 
Solution 

 ( ) 50  ),3sin(222 ==+ yxyx
dx
dye y  

 ( ) 50  ,)3sin(2 22

=
−

= y
e

yxx
dx
dy

y  

In this case 

 ( ) ye
yxxyxf

22)3sin(2, −
=  

The Runge-Kutta 4th order method is based on the following 
 ( )hkakakakayy ii 443322111 ++++=+                                                                         (1) 
where knowing the value of iyy =  at ix , we can find the value of 1+= iyy  at 1+ix , and 
 ii xxh −= +1  
Equation (1) is equated to the first five terms of Taylor series 

 
( ) ( ) ( )

( )41,4

4

3

1,3

3
2

1,2

2

1,1

!4
1

!3
1

!2
1

iiyx

iiyxiiyxiiyxii

xx
dx

yd

xx
dx

ydxx
dx

ydxx
dx
dyyy

ii

iiiiii

−+

−+−+−+=

+

++++

               (2) 

Knowing that  ( )yxf
dx
dy ,=  and hxx ii =−+1  

 ( ) ( ) ( ) ( ) 4'''3''2'
1 ,

!4
1,

!3
1,

!2
1, hyxfhyxfhyxfhyxfyy iiiiiiiiii ++++=+                    (3) 

Based on equating Equation (2) and Equation (3), one of the popular solutions used is  

  ( )hkkkkyy ii 43211 22
6
1

++++=+                                                                              (4) 
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 ( )ii yxfk ,1 =                                                                                                   (5a) 

 






 ++= hkyhxfk ii 12 2

1,
2
1

                                                                                        (5b) 

 





 ++= hkyhxfk ii 23 2

1,
2
1                                                                            (5c) 

 ( )hkyhxfk ii 34 , ++=                                                                                              (5d) 
 
 
Example 3 
A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K.  
Assuming heat is lost only due to radiation, the differential equation for the temperature of 
the ball is given by  

 ( ) ( ) K12000,1081102067.2 8412 =×−×−= − θθθ
dt
d    

where θ  is in K and t  in seconds.  Find the temperature at 480=t  seconds using Runge-
Kutta 4th order method.  Assume a step size of  240=h  seconds. 
Solution 

 ( )8412 1081102067.2 ×−×−= − θθ
dt
d  

 ( ) ( )8412 1081102067.2, ×−×−= − θθtf  

 ( )hkkkkii 43211 22
6
1

++++=+ θθ  

 For 0=i , 00 =t , K12000 =θ  
 ( )001 ,θtfk =  
 ( )1200,0f=  
 ( )8412 10811200102067.2 ×−×−= −  
 5579.4−=  

 





 ++= hkhtfk 1002 2

1,
2
1 θ  

 ( ) ( ) 





 ×−++= 2405579.4

2
11200,240

2
10f  

 ( )05.653,120f=  
 ( )8412 108105.653102067.2 ×−×−= −  
 38347.0−=  

 





 ++= hkhtfk 2003 2

1,
2
1 θ  

 ( ) ( ) 





 ×−++= 24038347.0

2
11200,240

2
10f  

 ( )0.1154,120f=  
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 ( )8412 10810.1154102067.2 ×−×−= −  
 8954.3−=  
 ( )hkhtfk 3004 , ++= θ  
 ( )( )240894.31200,2400 ×−++= f  
 ( )10.265,240f=  
 ( )8412 108110.265102067.2 ×−×−= −  
 0069750.0=  

 hkkkk )22(
6
1

432101 ++++= θθ  

 ( ) ( ) ( )( )240069750.08954.3238347.025579.4
6
11200 +−+−+−+=  

 ( ) 2401848.21200 ×−+=  
 K65.675=  

1θ  is the approximate temperature at 
 1tt =  
   ht += 0  
              2400+=  
              240=  
 ( )2401 θθ =  
                K65.675≈  
For K65.675,240,1 11 === θti  
 ( )111 ,θtfk =  
           ( )65.675,240f=  
           ( )8412 108165.675102067.2 ×−×−= −  
           44199.0−=  

 





 ++= hkhtfk 1112 2

1,
2
1 θ  

 
( ) ( ) 






 −++= 24044199.0

2
165.675,240

2
1240f

 
 ( )61.622,360f=  
 ( )8412 108161.622102067.2 ×−×−= −

 
 31372.0−=  

 





 ++= hkhtfk 2113 2

1,
2
1 θ  

 ( ) ( ) 





 ×−++= 24031372.0

2
165.675,240

2
1240f  

 ( )00.638,360f=  
 ( )8412 108100.638102067.2 ×−×−= −  
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 34775.0−=  
 ( )hkhtfk 3114 , ++= θ  
           ( )( )24034775.065.675,240240 ×−++= f  
           ( )19.592,480f=  
           ( )8412 108119.592102067.2 ×−×= −  
           25351.0−=  

 hkkkk )22(
6
1

432112 ++++= θθ  

 ( ) ( ) ( )( ) 24025351.034775.0231372.0244199.0
6
165.675 ×−+−+−+−+=  

 ( ) 2400184.2
6
165.675 ×−+=  

 K91.594=  

2θ  is the approximate temperature at  
 2tt =  
   ht += 1  
              240240+=  
              480=  
 
 ( )4802 θθ =  
 K91.594≈  
Figure 1 compares the exact solution with the numerical solution using the Runge-Kutta 4th 
order method with different step sizes. 
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Figure 1 Comparison of Runge-Kutta 4th order method  
with exact solution for different step sizes. 
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Table 1 and Figure 2 show the effect of step size on the value of the calculated temperature at 
480=t  seconds.  

 
Table 1  Value of temperature at time, 480=t s for different step sizes 
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Figure 2  Effect of step size in Runge-Kutta 4th order method. 

 
In Figure 3, we are comparing the exact results with Euler’s method (Runge-Kutta 1st order 
method), Heun’s method (Runge-Kutta 2nd order method), and Runge-Kutta 4th order 
method. 
The formula described in this chapter was developed by Runge.  This formula is same as 
Simpson’s 1/3 rule, if ( )yxf ,  were only a function of x .  There are other versions of the 4th 
order method just like there are several versions of the second order methods.  The formula 
developed by Kutta is 

 ( )hkkkkyy ii 43211 33
8
1

++++=+                                            (6) 

where 
 ( )ii yxfk ,1 =                                                                                                          (7a) 

 





 ++= 12 3

1,
3
1 hkyhxfk ii                                                                                  (7b) 

 





 +−+= 213 3

1,
3
2 hkhkyhxfk ii                            (7c) 

 ( )3214 , hkhkhkyhxfk ii +−++=                           (7d) 

Step size, h  ( )480θ  tE  %|| tε  
480 
240 
120 
60 
30 

-90.278 
594.91 
646.16 
647.54 
647.57 

737.85 
52.660 
1.4122 
0.033626 
0.00086900 

113.94 
8.1319 
0.21807 
0.0051926 
0.00013419 
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This formula is the same as the Simpson’s 3/8 rule, if ( )yxf ,  is only a function of x . 
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Figure 3  Comparison of Runge-Kutta methods of 1st (Euler), 2nd, and 4th order. 
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Chapter 08.05 
On Solving Higher Order Equations  
for Ordinary Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 

1. solve higher order and coupled differential equations, 
 
We have learned Euler’s and Runge-Kutta methods to solve first order ordinary differential 
equations of the form 

 ( ) ( ) 00,, yyyxf
dx
dy

==                                           (1) 

What do we do to solve simultaneous (coupled) differential equations, or differential 
equations that are higher than first order?  For example an thn order differential equation of 
the form 

 ( )xfya
dx
dya

dx
yda

dx
yda on

n

nn

n

n =++++ −

−

− 11

1

1                              (2) 

with 1−n initial conditions can be solved by assuming 
 1zy =                                              (3.1) 

 2
1 z

dx
dz

dx
dy

==                                          (3.2) 

 3
2

2

2

z
dx
dz

dx
yd

==                                         (3.3) 

   

 n
n

n

n

z
dx

dz
dx

yd
== −

−

−
1

1

1

                                        (3.n) 

 
( )








+−−−=

=

−

−

− xfya
dx
dya

dx
yda

a

dx
dz

dx
yd

n

n

n
n

n
n

n

011

1

1
1



           

         =  ( )( )xfzazaza
a nn

n

+−−− − 10211
1

                                  (3.n+1) 

The above Equations from (3.1) to (3.n+1) represent n  first order differential equations as 
follows 
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 ( )xzzfz
dx
dz ,,, 2112

1
==                                           (4.1) 

 ( )xzzfz
dx
dz ,,, 2123

2
==                                       (4.2) 

   

 ( )( ) 1  10211 xfzazaza
adx

dz
nn

n

n +−−−= −                                       (4.n) 

Each of the n first order ordinary differential equations are accompanied by one initial 
condition.  These first order ordinary differential equations are simultaneous in nature but can 
be solved by the methods used for solving first order ordinary differential equations that we 
have already learned. 
 
Example 1 
Rewrite the following differential equation as a set of first order differential equations. 

 ( ) ( ) 70,50,523 2

2

=′==++ − yyey
dx
dy

dx
yd x   

Solution 
The ordinary differential equation would be rewritten as follows.  Assume 

 ,z
dx
dy

=  

Then 

 
dx
dz

dx
yd
=2

2

 

Substituting this in the given second order ordinary differential equation gives 

 xeyz
dx
dz −=++ 523  

 ( )yze
dx
dz x 52

3
1

−−= −  

The set of two simultaneous first order ordinary differential equations complete with the 
initial conditions then is 

 ( ) 50, == yz
dx
dy  

 ( ) ( ) 70,52
3
1

=−−= − zyze
dx
dz x . 

Now one can apply any of the numerical methods used for solving first order ordinary 
differential equations. 
 
Example 2 
Given  

 ( ) ( ) 20,10,22

2

===++ −

dt
dyyey

dt
dy

dt
yd t , find by Euler’s method 

a) ( )75.0y  
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b) the absolute relative true error for part(a), if ( ) 668.175.0 =
exact

y  

c) ( )75.0
dt
dy  

Use a step size of 25.0=h . 
Solution 
First, the second order differential equation is written as two simultaneous first-order 
differential equations as follows.  Assume  

 z
dt
dy

=  

then  

 teyz
dt
dz −=++ 2  

 yze
dt
dz t −−= − 2  

So the two simultaneous first order differential equations are 

 ( ) 1yt,y,zfz
dt
dy

1 === (0),                                          (E2.1) 

 ( ) 2zzytfyze
dt
dz t ==−−= − (0) ,,,2 2                        (E2.2) 

Using Euler’s method on Equations (E2.1) and (E2.2), we get 
( )hzytfyy iiiii ,,11 +=+                          (E2.3) 

 ( )hzytfzz iiiii ,,21 +=+                          (E2.4) 
a) To find the value of ( )75.0y  and since we are using a step size of 25.0  and starting at 

0=t , we need to take three steps to find the value of ( )75.0y . 
For 2,1,0,0 000 ==== zyti , 
From Equation (E2.3) 
 ( )hzytfyy 000101 ,,+=   
      ( )( )25.02,1,01 1f+=  

      ( )
5.1

25.021
=

+=  

1y  is the approximate value of y  at 
 25.025.0001 =+=+== httt  
 ( ) 5.125.01 ≈= yy  
From Equation (E2.4) 
 ( )hzytfzz 000201 ,,+=  
      ( )( )25.02,1,02 2f+=  
      ( )( )( )25.01222 0 −−+= −e  
                 1=  

1z is the approximate value of z (same as 
dt
dy ) at 25.0=t  
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 ( ) 125.01 ≈= zz  
For 1,5.1,25.0,1 111 ==== zyti , 
From Equation (E2.3) 
 ( )hzytfyy 111112 ,,+=   

       ( )( )25.01,5.1,25.05.1 1f+=  
       ( )( )25.015.1 +=  
       75.1=  

2y  is the approximate value of y  at 
 50.025.025.012 =+=+== httt  
 ( ) 75.15.02 ≈= yy  
From Equation (E2.4) 
 ( )hzytfzz 111212 ,,+=  
      ( )( )25.01,5.1,25.01 2f+=  

      ( )( )( )25.05.1121 25.0 −−+= −e  
      ( )( )25.07211.21 −+=  
                  = 0.31970 

2z is the approximate value of z at 
 5.02 == tt  
 ( ) 3197.05.02 ≈= zz 0 
For 31970.0,75.1,5.0,2 222 ==== zyti , 
From Equation (E2.3) 
 ( )hzytfyy 222123 ,,+=   
      ( )( )25.031970.0,75.1,50.075.1 1f+=  
      ( )( )25.031970.075.1 +=  
      8299.1=  

3y  is the approximate value of y  at 
  75.025.05.023 =+=+== httt  
 ( ) 8299.175.03 ≈= yy  
From Equation (E2.4) 
 ( )hzytfzz 222223 ,,+=  
      ( )( )25.031970.0,75.1,50.031972.0 2f+=  
                 ( )( )( )25.075.131970.0231972.0 50.0 −−+= −e  
      ( )( )25.07829.131972.0 −+=  
      1260.0−=  

3z  is the approximate value of z  at 
75.03 == tt  

 ( ) 12601.075.03 −≈= zz  
     ( ) 8299.175.0 3 =≈ yy  
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b) The exact value of ( )75.0y  is 
  ( ) 668.175.0 =

exact
y  

The absolute relative true error in the result from part (a) is 

  
100

668.1
8299.1668.1

×
−

=∈t
 

        = 9.7062% 

c) ( )75.0
dx
dy 12601.03 −≈= z  

 
 
Example 3 
Given 

 2(0)1(0)22

2

===++ −

dt
dy,,yey

dt
dy

dt
yd t ,  

find by Heun’s method 
a) ( )75.0y  

b) ( )75.0
dx
dy .   

Use a step size of 25.0=h . 
Solution 
First, the second order differential equation is rewritten as two simultaneous first-order 
differential equations as follows.  Assume  

 z
dt
dy

=  

then  

 teyz
dt
dz −=++ 2  

 yze
dt
dz t −−= − 2  

So the two simultaneous first order differential equations are 

 ( ) 1(0)1 === ,yt,y,zfz
dt
dy                          (E3.1) 

 ( ) 2(0) ,,,2 2 ==−−= − zzytfyze
dt
dz t                        (E3.2) 

Using Heun’s method on Equations (1) and (2), we get 

 ( )hkk  yy y
2

y
1i1i ++=+ 2

1                                                                                       (E3.3) 

 ( )iii1
y

1 , z, yt fk =                                                                                             (E3.4a)  
 ( )z

1i
y

1ii1
y
2  hk , z hk  h, y t fk +++=                                                                (E 3.4b) 

 ( )hkk 
2
1 zz z

2
z
1i1i ++=+               (E3.5) 



08.05.6                                                        Chapter 08.05 

 ( )iii2
z
1 , z, yt  fk =                          (E3.6a) 

 ( )z
1i

y
ii2

z
2  hk , z hk  h, y t fk +++= 1                                    (E3.6b) 

For 2,1,0,0 ==== ooo zyti  
From Equation (E3.4a) 
 ( )ooo

y zytfk ,,11 =  
       ( )2,1,01f=  
       2=  
From Equation (E3.6a) 
 ( )00021 ,, zytfk z =  
      ( )2,1,02f=  
      ( ) 1220 −−= −e  
       = -4 
From Equation (E3.4b) 
 ( )zyy hkzhkyhtfk 1010012 ,, +++=  

       ( )( ) ( )( )( )425.02,225.01,25.001 −+++= f  
       ( )1,5.1,25.01f=  
        = 1 
From Equation (E3.6b) 

 ( )zyz hkzhkyhtfk 1010022 ,, +++=  
      ( )( ) ( )( )( )425.02,225.01,25.002 −+++= f  
      ( )1,5.1,25.02f=  
      ( ) 5.11225.0 −−= −e  
      7212.2−=  
From Equation (E3.3) 

 ( )hkkyy yy
2101 2

1
++=  

      ( )( )25.012
2
11 ++=  

   375.1=  
1y  is the approximate value of y  at 

 25.025.0001 =+=+== httt   
 ( ) 375.125.01 ≅= yy  
From Equation (E3.5) 

 ( )hkkzz zz
2101 2

1
++=  

      )25.0))(7212.2(4(
2
12 −+−+=  

      1598.1=  
1z  is the approximate value of z  at  

 25.01 == tt  
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 ( ) 1598.125.01 ≈= zz  
For 1598.1,375.1,25.0,1 111 ==== zyti  
From Equation (E3.4a) 
 ( )11111 ,, zytfk y =  
       ( )1598.1,375.1,25.01f=  
       1598.1=   
From Equation (E3.6a) 
 ( )11121 ,, zytfk z =  
      ( )1598.1,375.1,25.02f=  
      ( ) 375.11598.1225.0 −−= −e  
      9158.2−=  
From Equation (E3.4b) 
 ( )zyy hkzhkyhtfk 1111112 ,, +++=  
       ( ) ( )( )( )9158.225.01598.1),1598.1(25.0375.1,25.025.01 −+++= f  
                  ( )43087.0,6649.1,50.01f=  
       43087.0=  
From Equation (E3.6b) 
 ( )zyz hkzhkyhtfk 1111122 ,, +++=  
       ( ) ( )( )( )9158.225.01598.1),1598.1(25.0375.1,25.025.02 −+++= f  
       ( )43087.0,6649.1,50.02f=  
       ( ) 6649.143087.0250.0 −−= −e  
       9201.1−=  
From Equation (E3.3) 

 ( )hkkyy yy
2112 2

1
++=  

  ( )( )25.043087.01598.1
2
1375.1 ++=  

  5738.1=  
2y  is the approximate value of y  at 

 50.025.025.012 =+=+== httt   
 ( ) 5738.150.02 ≈= yy  
From Equation (E3.5) 

 ( )hkkzz zz
2112 2

1
++=  

      )25.0))(9201.1(9158.2(
2
11598.1 −+−+=  

      55533.0=  
2z  is the approximate value of z  at  

 50.02 == tt  
 ( ) 55533.050.02 ≈= zz  
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For 55533.0,57384.1,50.0,2 222 ==== zyti  
From Equation (E3.4a) 
 ( )22211 ,, zytfk y =  
       ( )55533.0,5738.1,50.01f=  
       55533.0=  
From Equation (E3.6a) 

 ( )22221 ,, zytfk z =  
      ( )55533.0,5738.1,50.02f=  
      ( ) 5738.155533.0250.0 −−= −e  
      0779.2−=  
From Equation (E3.4b) 
 ( )zyy hkzhkyhtfk 1212222 ,, +++=  

                 ( ) ( )( )( )0779.225.055533.0),55533.0(25.05738.1,25.050.01 −+++= f  
      ( )035836.0,7126.1,75.01f=  
       = 0.035836 
From Equation (E3.6b) 

 ( )zyz hkzhkyhtfk 1212222 ,, +++=  
      ( ) ( )( )( )0779.225.055533.0),55533.0(25.05738.1,25.050.02 −+++= f  
      ( )035836.0,7126.1,75.02f=  
      ( ) 7126.1035836.0275.0 −−= −e  
      3119.1−=  
From Equation (E3.3) 

 ( )hkkyy yy
2123 2

1
++=  

      ( )( )25.0035836.055533.0
2
15738.1 ++=  

      6477.1=  
3y  is the approximate value of y  at 

 75.025.050.023 =+=+== httt   
 ( ) 6477.175.03 ≈= yy  
b) From Equation (E3.5) 

 ( )hkkzz zz
2123 2

1
++=  

      )25.0))(3119.1(0779.2(
2
155533.0 −+−+=  

      13158.0=  
3z  is the approximate value of z  at  

 75.03 == tt  
 ( ) 13158.075.03 ≅= zz  
The intermediate and the final results are shown in Table 1. 
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                                    Table 1  Intermediate results of Heun’s method. 

i  0 1 2 
it  0 0.25 0.50 

iy  1 1.3750 1.5738 

iz  2 1.1598 0.55533 
yk1  2 1.1598 0.55533 
zk1  4−  9158.2−  0779.2−  
yk2  1 0.43087 0.035836 
zk2  7211.2−  9201.1−  3119.1−  

1+iy  1.3750 1.5738 1.6477 

1+iz  1.1598 0.55533 0.13158 
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08.06 
Shooting Method  
for Ordinary Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to 
 

1. learn the shooting method algorithm to solve boundary value problems, and 
2. apply shooting method to solve boundary value problems. 

 
 
What is the shooting method? 

Ordinary differential equations are given either with initial conditions or with boundary 
conditions.  Look at the problem below. 

 

 
Figure 1  A cantilevered uniformly loaded beam.  

 
 To find the deflection   as a function of location x , due to a uniform load q , the 
ordinary differential equation that needs to be solved is 

   2

2

2

2
xL

EI

q

dx

d



                               (1) 

where 
 L  is the length of the beam, 
            E  is the Young’s modulus of the beam, and  
 I  is the second moment of area of the cross-section of the beam. 
Two conditions are needed to solve the problem, and those are 
    00   

q 

υ 

L 

x
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    00 
dx

d
                          (2a,b) 

as it is a cantilevered beam at 0x .  These conditions are initial conditions as they are given 
at an initial point, 0x , so that we can find the deflection along the length of the beam. 
 Now consider a similar beam problem, where the beam is simply supported on the 
two ends 

 
Figure 2  A simply supported uniformly loaded beam. 

 
To find the deflection  as a function of x  due to the uniform load q , the ordinary 
differential equation that needs to be solved is 

  Lx
EI

qx

dx

d


22

2
                                (3) 

Two conditions are needed to solve the problem, and those are 
   00   

   0L                                          (4a,b) 
as it is a simply supported beam at 0x and Lx  .  These conditions are boundary 
conditions as they are given at the two boundaries, 0x and Lx  . 
 
The shooting method 

The shooting method uses the same methods that were used in solving initial value problems.  
This is done by assuming initial values that would have been given if the ordinary differential 
equation were an initial value problem.  The boundary value obtained is then compared with 
the actual boundary value.  Using trial and error or some scientific approach, one tries to get 
as close to the boundary value as possible.  This method is best explained by an example. 
 Take the case of a pressure vessel that is being tested in the laboratory to check its 
ability to withstand pressure.  For a thick pressure vessel of inner radius a  and outer radius 
b , the differential equation for the radial displacement u  of a point along the thickness is 
given by 

  
0

1
22

2


r

u

dr

du

rdr

ud

                                (5) 
        Assume that the inner radius  "5a  and the outer radius "8b , and the material of the 
pressure vessel is ASTM36 steel. The yield strength of this type of steel is 36 ksi. Two strain 
gages that are bonded tangentially at the inner and the outer radius measure the normal 
tangential strain in the pressure vessel as  
 00077462.0/  art          

q 

υ 

L 

x
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            00038462.0/  brt                         (6ab)

  

 
Figure 3  Cross-sectional geometry of a pressure vessel. 

                                     
at the maximum needed pressure.  Since the radial displacement and tangential strain are 
related simply by 

 
r

u
t  ,                                 (7) 

then 
 ''0038731.0500077462.0 aru  

            ''0030770.0800038462.0 bru                              (8) 

Starting with the ordinary differential equation 

     0030770.08,0038731.05,0
1

22

2

 uu
r

u

dr

du

rdr

ud
 

Let 

 w
dr

du
                                  (9) 

Then 

 0
1

2


r

u
w

rdr

dw
                                         (10) 

giving us two first order differential equations as 

   "0038731.05,  uw
dr

du
 

   knownnotw
r

u

r

w

dr

dw
 5,

2
                                   (11a,b) 

Let us assume 

        
58

58
55





uu

dr

du
w 00026538.0  

Set up the initial value problem. 

     "0038731.05,,,1  uwurfw
dr

du
      

b 
a

r
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     00026538.05,,,22
 wwurf

r

u

r

w

dr

dw
                                (12a,b) 

Using Euler’s method, 
  hwurfuu iiiii ,,11       

  hwurfww iiiii ,,21                                     (13a,b) 

Let us consider 4 segments between the two boundaries, "5r and "8r , then 

 
4

58 
h "75.0  

 
 00026538.0,"0038731.0,5,0 000  wuri   

  hwurfuu 000101 ,,  

        )75.0(00026538.0,0038371.0,50038371.0 1  f  

        )75.0(00026538.00038371.0   
      "0036741.0  
  hwurfww 000201 ,,  

        75.0)00026538.0,0038731.0,5(00026538.0 2  f  

        75.0
5

0038371.0

5

00026538.0
00026538.0

2 





 


  

       00010938.0  
  
 ,"75.575.05,1 01  hrri  

 00010940.0,"0036741.0 11  wu  

  hwurfuu 111112 ,,  

         75.000010938.0,0036741.0,75.50036741.0 1  f  

                    )75.0(00010938.00036741.0   
       0035920.0 ″ 
  hwurfww 111212 ,,  

         75.000010938.0,0036741.0,75.500010938.0 2  f  

           )75.0(00013015.000010938.0   
       000011769.0  
  
 "5.675.075.5,2 12  hrri  

 000011785.0,"0035920.0 22  wu  

  hwurfuu 222123 ,,  

        75.0000011769.0,0035920.0,5.60035920.0 1  f  

        )75.0(000011769.00035920.0   
      "0035832.0  

  hwurfww 222223 ,,  
        )75.0(000011769.00035920.0,5.6000011769.0 2  f  
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        )75.0(000086829.0000011769.0   
      000053352.0  
 
 "25.775.050.6,3 23  hrri  

 000053352.0,"0035832.0 33  wu  

  hwurfuu 333134 ,,  

         )75.0(000053352.0,0035832.0,25.70035832.0 1f  

         )75.0(000053352.00035832.0   
       "0036232.0  

  hwurfww 333234 ,,  
         )75.0(000053352.0,0035832.0,25.7000011785.0 2  f  

         )75.0(000060811.0000053352.0   
       000098961.0  
At  
 "875.025.734  hrrr  

we have 
   "0036232.084  uu  
 
While the given value of this boundary condition is 
   "003070.084  uu  

Let us assume a new value for  5
dr

du
.  Based on the first assumed value, maybe using twice 

the value of initial guess. 

           00053076.000026538.02
58

58
2525 





uu

dr

du
w  

 
Using 75.0h , and Euler’s method, we get 
   "0029665.084  uu  
While the given value of this boundary condition is 
   "0030770.084  uu  
 
Can we use the results obtained from the two previous iterations to get a better estimate of 

the assumed initial condition of  5
dr

du
?  One method is to use linear interpolation on the 

obtained data for the two assumed values of  5
dr

du
. 

With  

   ,00026538.05 
dr

du
 

we obtained 
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   "0036232.08 u , and 
with  

   ,00053076.05 
dr

du
 

we obtained 
   "0029665.08 u  

so a better starting value of  5
dr

du
 knowing that the actual value at  

   "00030770.08 u ,  
we get 

        00026538.00036232.00030770.0
0036232.00029645.0

00026538.000053076.0
5 





dr

du

            00048611.0  
Using "75.0h , and repeating the Euler’s method with  
   00048611.05 w ,  
we get 
   "0030769.084  uu  
while the actual given value of this boundary condition is 
   "0030770.08 u . 

In this case, this value coincides with the actual value of  8u .  If that were not the case, one 

would continue to use linear interpolation to refine the value of 4u  till one gets close to the 

actual value of  8u .  Note that the step size and the numerical method used would influence 
the accuracy for the obtained values.  For the last case, the values are as follows 
   "0038731.050  uu  

   "0035085.075.51  uu  

   "0032858.050.62  uu  

   "0031518.025.73  uu  

   "0030770.000.84  uu  
See Figure 4 for the comparison of the results with different initial guesses of the slope. 
 
Using 75.0h ″ and Runge-Kutta 4th order method, 
   "0038731.051  uu  

   "0035554.075.52  uu  

   "0033341.050.63  uu  

   "00317923.025.74  uu  

   "0030723.085  uu  
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t, 
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 (i

n)

du/dr = -0.00026538

du/dr = -0.00053076

du/d r= -0.00048611

Exact

 
Figure 4  Comparison of results with different initial guesses of slope 

 
Table 1 shows the comparison of the results obtained using Euler’s, Runge-Kutta and exact 
methods. 
 
Table 1  Comparison of Euler and Runge-Kutta results with exact results. 

r 
(in) 

Exact 
(in) 

Euler 
(in) 

(%)t  Runge-Kutta 
(in) 

(%)t  

5 

5.75 

6.5 

7.25 

8  

3.8731×10-3 

3.5567×10-3 

3.3366×10-3 

3.1829×10-3 

3.0770×10-3  

3.8731×10-3 

3.5085×10-3 

3.2858×10-3 

3.1518×10-3 

3.0770×10-3  

0.0000 

1.3731 

1.5482 

9.8967×10-1 

1.9500×10-3  

3.8731×10-3 

3.5554×10-3 

3.3341×10-3 

3.1792×10-3 

3.0723×10-3  

0.0000 

3.5824×10-2 

7.4037×10-2 

1.1612×10-1 

1.5168×10-1  
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Chapter 08.07   
Finite Difference Method for Ordinary Differential 
Equations 
 
 
 
 
After reading this chapter, you should be able to 
 

1. Understand what the finite difference method is and how to use it to solve problems. 
 
What is the finite difference method? 
The finite difference method is used to solve ordinary differential equations that have 
conditions imposed on the boundary rather than at the initial point.  These problems are 
called boundary-value problems.  In this chapter, we solve second-order ordinary differential 
equations of the form 

 bxayyxf
dx

yd
≤≤= ),',,(2

2

,          (1) 

with boundary conditions 
 ayay =)(  and byby =)(          (2) 
Many academics refer to boundary value problems as position-dependent and initial value 
problems as time-dependent.  That is not necessarily the case as illustrated by the following 
examples. 
The differential equation that governs the deflection y  of a simply supported beam under 
uniformly distributed load (Figure 1) is given by 

EI
xLqx

dx
yd

2
)(

2

2 −
=           (3) 

where 
 =x location along the beam (in) 
 =E Young’s modulus of elasticity of the beam (psi) 
 =I second moment of area (in4) 
 =q uniform loading intensity (lb/in) 
 =L length of beam (in) 
The conditions imposed to solve the differential equation are 

0)0( ==xy            (4) 
 0)( == Lxy  
Clearly, these are boundary values and hence the problem is considered a boundary-value 
problem. 
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         Figure 1 Simply supported beam with uniform distributed load. 
 
Now consider the case of a cantilevered beam with a uniformly distributed load (Figure 2).  
The differential equation that governs the deflection y  of the beam is given by 

EI
xLq

dx
yd

2
)( 2

2

2 −
=           (5) 

where 
 =x location along the beam (in) 
 =E Young’s modulus of elasticity of the beam (psi) 
 =I second moment of area (in4) 
 =q uniform loading intensity (lb/in) 
 =L length of beam (in) 
The conditions imposed to solve the differential equation are 

0)0( ==xy            (6) 

 0)0( ==x
dx
dy  

Clearly, these are initial values and hence the problem needs to be considered as an initial 
value problem. 
 

 
 Figure 2 Cantilevered beam with a uniformly distributed load. 
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Example 1 

The deflection y  in a simply supported beam with a uniform load q and a tensile axial load 
T is given by 

 
EI

xLqx
EI
Ty

dx
yd

2
)(

2

2 −
=−  (E1.1) 

where 
 =x location along the beam (in) 
 =T tension applied (lbs) 
 =E Young’s modulus of elasticity of the beam (psi) 
 =I second moment of area (in4) 
 =q uniform loading intensity (lb/in) 
 =L length of beam (in) 
 

 
             Figure 3 Simply supported beam for Example 1. 

Given, 
 7200=T lbs, 5400=q lbs/in, in 75=L , Msi 30=E , and 4in 120=I ,  
a) Find the deflection of the beam at "50=x .  Use a step size of "25=∆x  and approximate 
the derivatives by central divided difference approximation. 
b) Find the relative true error in the calculation of )50(y .   
 
Solution 
a) Substituting the given values, 

 
)120)(1030(2
)75()5400(

)120)(1030(
7200

662

2

×
−

=
×

−
xxy

dx
yd  

           )75(105.7102 76
2

2

xxy
dx

yd
−×=×− −−      (E1.2) 

Approximating the derivative 2

2

dx
yd  at node i  by the central divided difference 

approximation,  
 

q  
 
 
 

y  
 
 
 

L  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T  T  
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Figure 4 Illustration of finite difference nodes using                                                
central divided difference method. 
 

 2
11

2

2

)(
2

x
yyy

dx
yd iii

∆
+−

≈ −+     (E1.3) 

We can rewrite the equation as 

 )75(105.7102
)(

2 76
2

11
iii

iii xxy
x

yyy
−×=×−

∆
+− −−−+                (E1.4)  

Since 25=∆x , we have 4 nodes as given in Figure 3 

 
Figure 5 Finite difference method from 0=x  to 75=x  with 25=∆x . 

 
The location of the 4 nodes then is  
 00 =x  
 2525001 =+=∆+= xxx  
 50252512 =+=∆+= xxx  
 75255023 =+=∆+= xxx  
Writing the equation at each node, we get 
Node 1:  From the simply supported boundary condition at 0=x , we obtain 
 01 =y      (E1.5) 
Node 2:  Rewriting equation (E1.4) for node 2 gives 

 )75(105.7102
)25(

2
22

7
2

6
2

123 xxy
yyy

−×=×−
+− −−  

 )2575)(25(105.70016.0003202.00016.0 7
321 −×=+− −yyy  

 4
321 10375.90016.0003202.00016.0 −×=+− yyy  (E1.6)  

Node 3:  Rewriting equation (E1.4) for node 3 gives 

 )75(105.7102
)25(

2
33

7
3

6
2

234 xxy
yyy

−×=×−
+− −−  

 )5075)(50(105.70016.0003202.00016.0 7
432 −×=+− −yyy  

 4
432 10375.90016.0003202.00016.0 −×=+− yyy  (E1.7) 

Node 4:  From the simply supported boundary condition at 75=x , we obtain 
 04 =y   (E1.8) 
 

  0=x    25=x    50=x  

1=i  2=i  3=i  4=i  

  75=x  

1−i  i  1+i  
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Equations (E1.5-E1.8) are 4 simultaneous equations with 4 unknowns and can be written in 
matrix form as 

 





















×

×
=





































−
−

−

−

0
10375.9
10375.9

0

1000
0016.0003202.00016.00
00016.0003202.00016.0
0001

4

4

4

3

2

1

y
y
y
y

 

 
The above equations have a coefficient matrix that is tridiagonal (we can use Thomas’ 
algorithm to solve the equations) and is also strictly diagonally dominant (convergence is 
guaranteed if we use iterative methods such as the Gauss-Siedel method).  Solving the 
equations we get, 

 



















−
−

=



















0
5852.0
5852.0

0

4

3

2

1

y
y
y
y

 

 "5852.0)()50( 22 −=≈= yxyy  
 
The exact solution of the ordinary differential equation is derived as follows.  The 
homogeneous part of the solution is given by solving the characteristic equation 
 0102 62 =×− −m  
 0014142.0±=m  
Therefore, 
 xx

h eKeKy 0014142.0
2

0014142.0
1

−+=  
The particular part of the solution is given by 
 CBxAxy p ++= 2  
Substituting the differential equation (E1.2) gives 

 )75(105.7102 76
2

2

xxy
dx

yd
p

p −×=×− −−  

 )75(105.7)(102)( 7262
2

2

xxCBxAxCBxAx
dx
d

−×=++×−++ −−  

 )75(105.7)(1022 726 xxCBxAxA −×=++×− −−  
 2756626 105.710625.5)1022(102102 xxCABxAx −−−−− ×−×=×−+×−×−  
Equating terms gives 
 76 105.7102 −− ×−=×− A  
 56 10625.5102 −− ×−=×− B  
 01022 6 =×− − CA  
Solving the above equation gives 
 375.0=A  
 125.28−=B  
 51075.3 ×=C  
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The particular solution then is 
 52 1075.3125.28375.0 ×+−= xxy p  
The complete solution is then given by 
 xx eKeKxxy 0014142.0

2
0014142.0

1
52 1075.3125.28375.0 −++×+−=  

Applying the following boundary conditions 
 0)0( ==xy  
 0)75( ==xy  
we obtain the following system of equations  
           5

21 1075.3 ×−=+ KK  
         5

21 1075.389937.01119.1 ×−=+ KK  
These equations are represented in matrix form by 

 








×−
×−

=















5

5

2

1

1075.3
1075.3

89937.01119.1
11

K
K

 

A number of different numerical methods may be utilized to solve this system of equations 
such as the Gaussian elimination.  Using any of these methods yields 

 








×−
×−

=







5

5

2

1

10974343774.1
10775656226.1

K
K

 

Substituting these values back into the equation gives  
xx eexxy 0014142.050014142.0552 10974343774.110775656266.11075.3125.28375.0 −×−×−×+−=

Unlike other examples in this chapter and in the book, the above expression for the deflection 
of the beam is displayed with a larger number of significant digits.  This is done to minimize 
the round-off error because the above expression involves subtraction of large numbers that 
are close to each other. 
 
b) To calculate the relative true error, we must first calculate the value of the exact solution at 

50=y . 
 )50(0014142.0552 10775656266.11075.3)50(125.28)50(375.0)50( ey ×−×+−=  
  )50(0014142.0510974343774.1 −×− e  
 5320.0)50( −=y  
The true error is given by 
 tE  = Exact Value – Approximate Value 
 )5852.0(5320.0 −−−=tE  
 05320.0=tE   
The relative true error is given by 

 %100
Value True
Error True

×=∈t  

 %100
5320.0

05320.0
×

−
=∈t  

 %10−=∈t  
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Example 2 
Take the case of a pressure vessel that is being tested in the laboratory to check its ability to 
withstand pressure.  For a thick pressure vessel of inner radius a  and outer radius b , the 
differential equation for the radial displacement u  of a point along the thickness is given by 

  01
22

2

=−+
r
u

dr
du

rdr
ud                                      (E2.3) 

The inner radius 5 ′′=a  and the outer radius 8 ′′=b , and the material of the pressure vessel is 
ASTM A36 steel. The yield strength of this type of steel is 36 ksi. Two strain gages that are 
bonded tangentially at the inner and the outer radius measure normal tangential strain as  
 00077462.0/ =∈ =art          
            00038462.0/ =∈ =brt                (E2.4a,b) 
at the maximum needed pressure. Since the radial displacement and tangential strain are 
related simply by 

 
r
u

t =∈ ,                (E2.5) 

then 
 ''0038731.0500077462.0 =×==aru  

            ''0030769.0800038462.0 =×==bru   
The maximum normal stress in the pressure vessel is at the inner radius ar =  and is given by 

 







+

−
=

== arar dr
du

r
uE ν

ν
σ 2max 1

                         (E2.7) 

where 
 =E  Young’s modulus of steel (E= 30 Msi) 
 =ν  Poisson’s ratio ( =ν 0.3) 
The factor of safety, FS is given by  

  
max

steel of strength Yield
σ

=FS               (E2.8) 

a) Divide the radial thickness of the pressure vessel into 6 equidistant nodes, and find 
the radial displacement profile 

b) Find the maximum normal stress and factor of safety as given by equation (E2.8) 
c) Find the exact value of the maximum normal stress as given by equation (E2.8) if it is 

given that the exact expression for radial displacement is of the form  

r
CrCu 2

1 += .   

Calculate the relative true error. 
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Solution 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)  The radial locations from ar =  to br =  are divided into n  equally spaced segments, and 
hence resulting in 1+n  nodes.  This will allow us to find the dependent variable u  
numerically at these nodes.  
At node i  along the radial thickness of the pressure vessel, 

 
( )2

11
2

2 2
r

uuu
dr

ud iii

∆

+−
≈ −+                                     (E2.9) 

 
r

uu
dr
du ii

∆
−

≈ +1                                                                       (E2.10) 

Such substitutions will convert the ordinary differential equation into a linear equation (but 
with more than one unknown).  By writing the resulting linear equation at different points at 
which the ordinary differential equation is valid, we get simultaneous linear equations that 
can be solved by using techniques such as Gaussian elimination, the Gauss-Siedel method, 
etc. 
Substituting these approximations from Equations (E2.9) and (E2.10) in Equation (E2.3) 

 
( )

012
2

1
2

11 =−
∆
−

+
∆

+− +−+

i

iii

i

iii

r
u

r
uu

rr
uuu

                                            (E2.11) 

 
( ) ( ) ( )

0111211
122212 =

∆
+










−

∆
−

∆
−+








∆

+
∆

−+ ii
ii

i
i

u
r

u
rrrr

u
rrr

                          (E2.12) 

 
Let us break the thickness, ab − , of the pressure vessel into 1+n  nodes, that is ar =  is 
node 0=i  and br =  is node ni = . That means we have 1+n  unknowns. 
We can write the above equation for nodes 1,...,1 −n .  This will give us 1−n  equations.  At 
the edge nodes, 0=i  and ni = , we use the boundary conditions of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

i-1 i+1 

b 

a 

 i 

 0…… 

 a 

……n 

 b 
i-1 i 

Figure 4  Nodes along the radial direction. 
 

 i+1 
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 aruu ==0  

 brn uu ==  
This gives a total of 1+n  equations. So we have 1+n  unknowns and 1+n  linear equations. 
These can be solved by any of the numerical methods used for solving simultaneous linear 
equations. 
 We have been asked to do the calculations for ,5=n  that is a total of 6 nodes. This 
gives 

 
n

abr −
=∆  

                 
5

58 −
=  

                 6.0= " 
At node "5,0 0 === ari , "0038731.00 =u                                               (E2.13) 
At node "6.56.05,1 01 =+=∆+== rrri                                  (E2.14) 

 ( )( ) ( ) ( )( ) 0
6.06.5

1
6.0
1

6.5
1

6.06.5
1

6.0
2

6.0
1

2212202 =







++








−−−+ uuu  

 00754.38851.57778.2 210 =+− uuu                                  (E2.15) 
At node ,2=i   "2.66.06.512 =+=∆+= rrr  

 ( )( ) ( )( ) 0
6.02.6

1
6.0
1

2.6
1

6.02.6
1

6.0
2

6.0
1

3222212 =







++








−−−+ uuu       

 00466.38504.57778.2 321 =+− uuu                                  (E2.16) 
At node ,3=i  "8.66.02.623 =+=∆+= rrr  

 ( )( ) ( )( ) 0
6.08.6

1
6.0
1

8.6
1

6.08.6
1

6.0
2

6.0
1

4232222 =







++








−−−+ uuu

 
 00229.38223.57778.2 432 =+− uuu                                  (E2.17) 
At node ,4=i   4.76.08.634 =+=∆+= rrr ″ 

 ( )( ) ( ) ( )( ) 0
6.04.7

1
6.0
1

4.7
1

6.04.7
1

6.0
2

6.0
1

5242232 =







++








−−−+ uuu

 
 00030.37990.57778.2 543 =+− uuu                                  (E2.18) 
At node ,5=i  86.04.745 =+=∆+= rrr ″ 
 0030769.05 ==

=br
uu ″                                  (E2.19) 

Writing Equation (E2.13) to (E2.19) in matrix form gives 
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−
−

−
−

100000
0030.37990.57778.2000
00229.38223.57778.200
000466.38504.57778.20
0000754.38851.57778.2
000001



























5

4

3

2

1

0

u
u
u
u
u
u

=



























0030769.0
0
0
0
0

0038731.0

  

  
The above equations are a tri-diagonal system of equations and special algorithms such as 
Thomas’ algorithm can be used to solve such a system of equations. 
 0038731.00 =u ″ 
 0036165.01 =u ″ 
 0034222.02 =u ″ 
 0032743.03 =u ″ 
 0031618.04 =u ″ 
 0030769.05 =u ″ 
b)   To find the maximum stress, it is given by Equation (E2.7) as 

 







+

−
=

== arar dr
du

r
uE ν

ν
σ 2max 1

 

 psi1030 6×=E  
 3.0=ν  
 0038731.00 === uu ar ″ 
  

r
uu

dr
du

ar ∆
−

≈=
01  

  6.0
0038731.00036165.0 −

=
 

  00042767.0−=  
The maximum stress in the pressure vessel then is 

 
( )






 −+

−
×

=σ 00042767.03.0
5

0038731.0
3.01

1030
2

6

max
 

                    psi101307.2 4×=  
So the factor of safety FS  from Equation (E2.8) is  

 6896.1
101307.2

1036
4

3

=
×

×
=FS  

c)  The differential equation has an exact solution and is given by the form 

 
r

CrCu 2
1 +=                                     (E2.20) 

where 1C  and 2C  are found by using the boundary conditions at ar =  and br = . 
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 5
)5(0038731.0)5()( 2

1
CCruaru +=====

 

 8
)8(0030769.0)8()( 2

1
CCrubru +=====

  
giving 

 00013462.01 =C  
 016000.02 =C  
Thus 

 
r

ru 016000.000013462.0 +=                                   (E2.21) 

 2

016000.000013462.0
rdr

du
−=                                  (E2.22) 

 







+

−
=

== arar dr
du

r
uE ν

ν
σ 2max 1

 

                   

( )

























 −+

+

−
×

= 22

6

5
016000.00013462.03.0

5
5

01600.0500013462.0

3.01
1030

 
                   psi100538.2 4×=  
The true error is 
 44 101307.2100538.2 ×−×=tE  

                 
2106859.7 ×−=  

The absolute relative true error is 

 100
100538.2

101307.2100538.2
4

44

×
×

×−×
=∈t  

       %744.3=  
Example 3 
The approximation in Example 2 

 
r

uu
dr
du ii

∆
−

≈ +1  

is first order accurate, that is , the true error is of )( rO ∆ . 
The approximation 

 
( )2

11
2

2 2
r

uuu
dr

ud iii

∆

+−
≈ −+                                     (E3.1) 

is second order accurate, that is , the true error is ( )( )2rO ∆  
 Mixing these two approximations will result in the order of accuracy of ( )rO ∆  and 

( )( )2rO ∆ , that is ( )rO ∆ . 
           So it is better to approximate 
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  ( )r
uu

dr
du ii

∆
−

≈ −+

2
11                                      (E3.2) 

because this equation is second order accurate.  Repeat Example 2 with the more accurate 
approximations. 
Solution 

a)  Repeating the problem with this approximation, at node i in the pressure vessel, 

 2
11

2

2

)(
2

r
uuu

dr
ud iii

∆
+−

≈ −+                                                (E3.3) 

 
r
uu

dr
du ii

∆
−

≈ −+

2
11                                                 (E3.4) 

Substituting Equations (E3.3) and (E3.4) in Equation (E2.3) gives 

 
( ) ( ) 0

2
12

2
11

2
11 =−

∆
−

+
∆

+− −+−+

i

iii

i

iii

r
u

r
uu

rr
uuu  

 ( ) ( ) ( ) ( )
0

2
11121

2
1

122212 =







∆

+
∆

+









−

∆
−+









∆
+

∆
− +− i

i
i

i
i

i

u
rrr

u
rr

u
rrr

               (E3.5) 

At node 5,0 0 === ari " 
 0038731.00 =u "                                      (E3.6) 
At node "6.56.05,1 01 =+=∆+== rrri  

 ( )( ) ( ) ( ) ( ) ( )( ) 0
6.06.52

1
6.0
1

6.5
1

6.0
2

6.0
1

6.06.52
1

2212202 =







++








−−+








+− uuu  

 09266.25874.56297.2 210 =+− uuu                                    (E3.7) 
At node ,2=i  2.66.06.512 =+=∆+= rrr " 

      ( )( ) ( )( ) 0
6.02.62
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1
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1

6.0
2

6.0
1

6.02.62
1

3222212 =
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+− uuu              (E3.8) 

 09122.25816.56434.2 321 =+− uuu  
At node ,3=i  8.66.02.623 =+=∆+= rrr " 

      ( )( ) ( )( ) 0
6.08.62

1
6.0
1

8.6
1

6.0
2

6.0
1

6.08.62
1

4232222 =







++






 −−+








+− uuu              (E3.9) 

 09003.25772.56552.2 432 =+− uuu  
At node ,4=i   4.76.08.634 =+=∆+= rrr " 

     ( )( ) ( ) ( )( ) 0
6.04.72

1
6.0
1

4.7
1

6.0
2

6.0
1

6.04.72
1

5242232 =







++








−−+








+− uuu           (E3.10) 

 08903.25738.56651.2 543 =+− uuu  
At node ,5=i  86.04.745 =+=∆+= rrr " 
 0030769.0/5 == =bruu "                                  (E3.11) 
 
Writing Equations (E3.6) thru (E3.11) in matrix form gives 
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009122.25816.56434.20
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0

u
u
u
u
u
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0030769.0
0
0
0
0

0038731.0

  

  
The above equations are a tri-diagonal system of equations and special algorithms such as 
Thomas’ algorithm can be used to solve such equations. 
 0038731.00 =u " 
 0036115.01 =u " 
 0034159.02 =u " 
 0032689.03 =u " 
 0031586.04 =u " 
 0030769.05 =u " 

b) ( )r
uuu

dr
du

ar ∆
−+−

≈
= 2

43 210  

  
)6.0(2

0034159.00036115.040038731.03 −×+×−
=  

  410925.4 −×−=  

 ( )





 ×−+

−
×

= −4
2

6

max 10925.43.0
5

0038731.0
3.01

1030σ  

                     psi100666.2 4×=  
 Therefore, the factor of safety FS  is  

 4

3

100666.2
1036
×

×
=FS  

       7420.1=  
c)  The true error in calculating the maximum stress is 
 44 100666.2100538.2 ×−×=tE  
                 psi128−=  
The relative true error in calculating the maximum stress is 

 100
100538.2

128
4 ×

×
−

=∈t  

      %62323.0=  
 

Table 1 Comparisons of radial displacements from two methods. 

r  exactu  order1st u  t∈  order  2ndu  t∈  
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5 0.0038731 0.0038731 0.0000 0.0038731 0.0000 

5.6 0.0036110 0.0036165 1105160.1 −×  0.0036115 2104540.1 −×  

6.2 0.0034152 0.0034222 1100260.2 −×  0.0034159 2108765.1 −×  

6.8 0.0032683 0.0032743 1108157.1 −×  0.0032689 2106334.1 −×  

7.4 0.0031583 0.0031618 1100903.1 −×  0.0031586 3105665.9 −×  

8 0.0030769 0.0030769 0.0000 0.0030769 0.0000 
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Chapter 09.01 
Golden Section Search Method 
 
 
 
After reading this chapter, you should be able to: 
 

1. Understand the fundamentals of the Equal Interval Search method 
2. Understand how the Golden Section Search method works 
3. Learn about the Golden Ratio 
4. Solve one-dimensional optimization problems using the Golden Section Search 

method 
 

Equal Interval Search Method 
One of the simplest methods of finding the local maximum or local minimum is the Equal 
Interval Search method.  Let’s restrict our discussion to finding the local maximum of ( )xf  
where the interval in which the local maximum occurs is [ ]ba, . As shown in Figure 1, let’s 
choose an interval of ε  over which we assume the maximum occurs.  Then we can compute  







 +

+
22
εbaf  and 






 −

+
22
εbaf . If 






 −

+
≥






 +

+
2222
εε bafbaf , then the interval in 

which the maximum occurs is 



 −

+ bba ,
22
ε , otherwise it occurs in 



 +

+
22

, εbaa .  This 

reduces the interval in which the local maximum occurs. This procedure can be repeated until 
the interval is reduced to the level of our choice. 

09.01.1 
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Figure 1A  Equal interval search method (new upper bound can be identified). 
 
Remarks: 
As can be seen from the marked data points A, −M , +M , and B on Figure 1A, the function 
values have increased from point A to point M-, but then have decreased from point −M to 
point +M . Whenever there is a sudden change in the pattern, such as from increasing the 
function value to decreasing its value, as shown in Figure 1A (or vice versa, as shown in 
Figure 1B, where 12 fff L << and then uff >1 ), then the new lower and upper bound 
bracket values can be found. In this case, the new lower bound remains to be the same as its 
previous lower bound (at point A), and the new upper bound can be found (at point +M ), as 
shown in Figure 1A. 

 
Figure 1B  Equal interval search method (new lower bound can be identified). 

2
ε

 

x 

f(x) 

a b 
2

ba +
 

2
ε

 

+

M

−M

A
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Example 1 
Consider Figure 2 below. The cross-sectional area A  of a gutter with equal base and edge 
length of 2 is given by  

)cos1(sin4 θθ +=A  
Using an initial interval of ]2/,0[ π , find the interval after 3 iterations.  Use an initial interval 

2.0=ε .               
 

 
          

Figure 2  Cross section of the gutter. 
 
Solution  

If we assume the initial interval to be [ ] [ ]5708.1,02/,0 ≅π  and choose 2.0=ε , then 







 +

+
=






 +

+
2
2.0

2
5708.10

22
fbaf ε  

( )88540.0f=  
0568.5=  







 −

+
=






 −

+
2
2.0

2
5708.10

22
fbaf ε  

( )6854.0f=  
4921.4=  

 
Since ( ) ( )68540.088540.0 ff > , the interval in which the local maximum occurs is 
[ ]5708.1,68540.0 . 
Now 







 +

+
=






 +

+
2
2.0

2
5708.168540.0

22
fbaf ε  

( )2281.1f=  
0334.5=  

2 

2 

2 

θ θ 
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 −

+
=






 −

+
2
2.0

2
5708.168540.0

22
fbaf ε  

( )0281.1f=  
1942.5=  

 
Since ( ) ( )0281.12281.1 ff < , the interval in which the local maximum occurs is 
[ ]2281.1,68540.0 . 
Now 

 





 +

+
=






 +

+
2
2.0

2
2281.168540.0

22
fbaf ε  

                     ( )0567.1f=  
                     1957.5=  







 −

+
=






 −

+
2
2.0

2
2281.168540.0

22
fbaf ε  

( )8567.0f=  
0025.5=  

 
Since ( ) ( )8567.00567.1 ff > , then the interval in which the local maximum occurs is 
( )2281.1,8567.0 . After sixteen iterations, the interval is reduced to 0.02 and the 
approximation of the maximum area is 5.1961 at an angle of 60.06 degrees. 
The exact answer is 0472.1=θ  for which ( ) 1962.5=θf .   
 
What is the Golden Section Search method used for and how does it work? 
The Golden Section Search method is used to find the maximum or minimum of a unimodal 
function. (A unimodal function contains only one minimum or maximum on the interval 
[a,b].) To make the discussion of the method simpler, let us assume that we are trying to find 
the maximum of a function.  The previously introduced Equal Interval Search method is 
somewhat inefficient because if the interval is a small number it can take a long time to find 
the maximum of a function. To improve this efficiency, the Golden Section Search method is 
suggested. 

As shown in Figure 3, choose three points lx , 1x  and ux  )( 1 ul xxx << along the x-
axis with corresponding values of the function ( )lxf , ( )1xf , and ( )uxf , respectively. Since 
( ) ( )lxfxf >1  and ( ) ( )uxfxf >1 , the maximum must lie between lx  and ux . Now a fourth 

point denoted by 2x  is chosen to be between the larger of the two intervals of ],[ 1xxl  and 
],[ 1 uxx . Assuming that the interval ],[ 1xxl is larger than ],[ 1 uxx , we would chose ],[ 1xxl as 

the interval in which 2x  is chosen. If ( ) ( )12 xfxf >  then the new three points would be 
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12 xxxl << ; else if ( ) ( )12 xfxf < then the new three points are uxxx << 12 . This process is 
continued until the distance between the outer points is sufficiently small. 
 

                                                   
Figure 3  Cross section of the gutter. 

 
How are the intermediate points in the Golden Section Search determined?  

We chose the first intermediate point lx  to equalize the ratio of the lengths as shown in Eq. 
(1) where a and b are distance as shown in Figure 4. Note that ba +  is equal to the distance 
between the lower and upper boundary points lx  and ux . 

a
b

ba
a

=
+

                             (1) 

 

 
Figure 4  Determining the first intermediate point 
 
The second intermediate point 2x  is chosen similarly in the interval a  to satisfy the 
following ratio in Eq. (2) where the distances of a and b are shown in Figure 5. 
 

b
ba

a
b −
=                                 (2) 

x2  xl  x1
 xu  

( )xuf  

( )xf 2
 

( )xf 1
 

( )xlf  

( )xf

x

a b lx  1x  ux  

( )uxf  

( )1xf  

( )lxf  

x

( )xf
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                            Figure 5  Determining the second intermediate point 
 
Does the Golden Section Search have anything to do with the Golden Ratio?  
The ratios in Equations (1) and (2) are equal and have a special value known as the Golden 
Ratio. The Golden Ratio has been used since ancient times in various fields such as 
architecture, design, art and engineering. To determine the value of the Golden Ratio let 

baR /= , then Eq. (1) can be written as  
 

01  
     or           

              11

2 =−+

=+

RR

R
R

                                         

              (3) 
Using the quadratic formula, the positive root of Eq. (3) is  
 

61803.0
2

15
2

)1(411

=

−
=

−−+−
=R

                                                           (4) 

 
In other words, the intermediate points 1x  and 2x  are chosen such that, the ratio of the 
distance from these points to the boundaries of the search region is equal to the golden ratio 
as shown in Figure 6. 
 
 

a-b 

b 

2x  a lx  1x  ux  

( )uxf  

( )2xf  
( )1xf  

( )lxf  

( )xf

x
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Figure 6  Intermediate points and their relation to boundary points 

 
What happens after choosing the first two intermediate points? 
Next we determine a new and smaller interval where the maximum value of the function lies 
in. We know that the new interval is either ],,[ 12 xxxl  or ],,[ 12 uxxx . To determine which of 
these intervals will be considered in the next iteration, the function is evaluated at the 
intermediate points 2x  and 1x . If )()( 12 xfxf > , then the new region of interest will be 

],,[ 12 xxxl ; else if )()( 12 xfxf < , then the new region of interest will be ],,[ 12 uxxx . In 
Figure 6, we see that )()( 12 xfxf > , therefore our new region of interest is ],,[ 12 xxxl . We 
should point out that the boundaries of the new smaller region are now determined by lx  and 

1x , and we already have one of the intermediate points, namely 2x , conveniently located at a 
point where the ratio of the distance to the boundaries is the Golden Ratio. All that is left to 
do is to determine the location of the second intermediate point. Can you determine if the 
second point will be closer to lx  or 1x ?  This process of determining a new smaller region of 
interest and a new intermediate point will continue until the distance between the boundary 
points are sufficiently small. 
 
The Golden Section Search Algorithm 

The following algorithm can be used to determine the maximum of a function )(xf . 
 
Initialization:  
Determine lx  and ux  which is known to contain the maximum of the function )(xf . 
 
Step 1  
Determine two intermediate points 1x  and 2x such that  

b 

2x  

a b 
lx  1x  ux  

( )uxf  

( )2xf  
( )1xf  

( )lxf  

a 

x

( )xf
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dxx
dxx

u

l

−=
+=

2

1  

where 

)(
2

15
lu xxd −

−
=  

 
Step 2  
Evaluate )( 1xf  and )( 2xf . 
If )()( 21 xfxf > , then determine new 21,, xxxl  and ux  as shown in Equation set (5). Note 
that the only new calculation is done to determine the new 1x . 

)(
2

15
1

12

2

lul

uu

l

xxxx

xx
xx
xx

−
−

+=

=
=
=

                                          (5) 

If )()( 21 xfxf < , then determine new 21,, xxxl  and ux  as shown in Equation set (6). Note 
that the only new calculation is done to determine the new 2x . 

)(
2

15
2

21

1

luu

u

ll

xxxx

xx
xx
xx

−
−

−=

=
=
=

                               (6) 

 
Step 3 

If ε<− lu xx  (a sufficiently small number), then the maximum occurs at 
2

lu xx +  and stop 

iterating, else go to Step 2. 
 
 
Further Remarks and Explanation About The Golden Section Search Algorithm 

The above discussion has assumed that the user can determine Lx  and ux  which is known to 
contain the maximum of the function )(xf . In this section, the Golden Section algorithm is 
re-examined from a more rigorous viewpoint, and with the following 2 primary objectives: 
 

(a) Developing an automated procedure to determine the appropriated initial guesses for 
the lower and upper bounds, respectively. 
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(b) Proving (in a more rigorous way) that we only needs to find/compute only 1 (not 2) 
intermediate point, based on the current bracket. 

 
To start the Golden Section search process, a small (positive) parameter “δ ” is defined by 
the user, say “δ  ” = 0.05. The function value g(α = δ ) = 1g  is initially computed. The 
second interval will be 1.618 times the previous (or first) interval (or 1.618 * δ ), therefore, 
the next computed function value g(α  = 2.618 *δ ) = 2g  is computed.  
Since 2g  is smaller than the previous value 1g  [see Figure 6A], one continues to consider the 
third interval which will be 1.618 times the second interval (or 1.618 * 1.618 δ  = δ2618.1 ), 
and the next computed function value g(α  = 5.232 * δ ) = 3g  is computed. As indicated in 
Figure 6A, α  = (5.232 *δ  ) is also labeled as the (j-2)-th point on the curve! 
Since 3g  is still smaller than the previous value 2g  [see Figure 6A], one continues to 
consider the fourth interval which will be 1.618 times the third interval (or 1.618 * δ2618.1 = 

δ3618.1 and the next computed function value g (α  = 9.468 * δ ) = 4g  is computed. As 
indicated in Figure 6A, α  = (9.468 *δ ) is also labeled as the (j-1)-th point on the curve! 
Since 4g is still smaller than the previous value 3g  [see Figure 6A], one continues to 
consider the fifth interval which will be 1.618 times the fourth interval (or 1.618 * δ3618.1  = 

δ4618.1 ), and the next computed function value g (α  = 16.3215 *δ ) = 5g  is computed. As 
indicated in Figure 6A, α  = (16.3215 *δ ) is also labeled as the j-th point on the curve! 
At this moment, since 5g  = g(at the j-th point) is larger than 4g  = g(at the j-1-th point), the 
“decreasing pattern” is no longer true, therefore, we can establish the initial lower bound and 
the initial upper bound to be equal to the values of α at the (j-2)-th location and at the j-th 
location, respectively ! 
 Based on the above observation and analysis, one can easily figure out the general 
formulas to compute and identify the initial lower and upper bound values for α  as indicated 
in Figure 6A. 
 Having found the initial lower and upper bounds for α , the 2 intermediate points 

aα and bα need be inserted (with the same distance measured from the lower bound and 
upper bound, respectively) as shown in Figure 6B. Using Figure 6B, aα can be computed and 
displayed as shown in equation (7). 
 Finally, with trivial algebraic manipulations, the value for aα can be shown to be the 
same as the value for α  (at the j-1_th point), as indicated in equation (8). 
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=
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=
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0
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0

1 )618.1()618.1(1)618.1(
j

v

v
j

v

jv
a δδδα  already known!     (8) 

 
Based on Figures 6A and 6B, one observes that 
 
 If )()( ba gg αα = then the minimum will be between bα and bα . 

 If )()( ba gg αα as shown in Figure 6B, then minimum will be between aα and uα . 

Hence, =Lα new lower bound aα=  

 Notice that: j
auLu )618.1(δαααα =−=−  

and 
 )]618.1[]618.1[)(236.0())(382.021( 1 jj

LUabLb δδαααααα +=−×−=−=− −  

 
618.1
618.1)]618.1[(618.0])618.11[]618.1[)(236.0( 11 ×=+×= −− jj δδ  

 )(382.0)]618.1[()382.0( LU
j

Lb ααδαα −=×=−  
 
Thus bα (with respect to uα and Lα ) plays the same role as aα (with respect to uα and Lα )!! 
The step-by-step Golden Section procedure can be summarized as: 
 
Step 1: 
For a chosen small step sizeδ inα say, 05.0=δ , let j be the smallest integer such that 

×

×

× ×

×
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Step 2: 
Compute )( bg α , where )(382.0 LULa αααα −+= , and )(618.0 LULb αααα −+=  

Note that ∑
−

=

=
1

0
)618.1(

j

V

V
a δα , so )( ag α is already known. 

Step 3: 
Compare )( ag α and )( bg α and go to Step 4, 5, or 6. 
 
Step 4: 
If )()( ba gg αα < , then b

i
L ααα ≤≤ . By choice of aα and bα , the new points  

LL αα = and bu αα =  have ab αα = . 

Compute )( ag α , where )(382.0 LuLa αααα −+= and go to Step 7. 
 
Step 5: 
If )()( ba gg αα > , then u

i
a ααα ≤≤ . Similar to the procedure in Step 4, put aL αα =  and 

bu αα = . 

Compute )( bg α , where )(618.0 LuLb αααα −+= and go to Step 7. 
 
Step 6: 
If )()( ba gg αα = put aL αα = and bu αα =  and return to Step 2. 
 
Step 7: 

If Lu αα − is suitably small, put )(
2
1

Lu
i ααα += and stop. 

Otherwise, delete the bar symbols on Lα , aα , bα and uα and return to Step 3. 
 
Example 2 
Consider Figure 7 below. The cross-sectional area A  of a gutter with equal base and edge 
length of 2 is given by  

)cos1(sin4 θθ +=A  
Find the angle θ  which maximizes the cross-sectional area of the gutter. Using an initial 
interval of ]2/,0[ π , find the solution after 2 iterations.  Use an initial 05.0=ε . 
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                                  Figure 7  Cross section of the gutter 
 
Solution 
The function to be maximized is  

)cos1(sin4)( θθθ +=f  
 
Iteration 1:  
Given the values for the boundaries of 2/  0 π== ul xandx , we can calculate the initial 
intermediate points as follows: 

60000.0

)5708.1(
2

155708.1

)(
2

15

97080.0

)5708.1(
2

150

)(
2

15

2

1

=

−
−=

−
−

−=

=

−
+=

−
−

+=

luu

lul

xxxx

xxxx

 

 
The function is evaluated at the intermediate points as 1654.5)9708.0( =f  
and 1227.4)60000.0( =f . Since )()( 21 xfxf > , we eliminate the region to the left of 2x  and 
update the lower boundary point as 2xxl = . The upper boundary point ux remains 
unchanged. The second intermediate point 2x  is updated to assume the value of 1x  and 
finally the first intermediate point 1x  is re-calculated as follows: 

2 

2 

2 

θ θ 
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2000.1

)60000.05708.1(
2

1560000.0
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2

15
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−
−

+=

−
−

+= lul xxxx

 

 
To check the stopping criteria the difference between ux  and lx  is calculated to be 

97080.060000.05708.1 =−=− lu xx  
which is greater than 05.0=ε . The process is repeated in the second iteration.  
 
Iteration 2:  
The values for the boundary and intermediate points used in this iteration were calculated in 
the previous iteration as shown below. 

97080.0
2000.1
5708.1
60000.0

2

1

=
=
=
=

x
x
x
x

u

l

 

 
Again the function is evaluated at the intermediate points as 0791.5)20000.1( =f  
and 1654.5)97080.0( =f . Since )()( 21 xfxf < , the opposite of the case seen in the first 
iteration, we eliminate the region to the right of 1x  and update the upper boundary point as 

1xxu = . The lower boundary point lx  remains unchanged. The first intermediate point 1x  is 
updated to assume the value of 2x  and finally the second intermediate point 2x  is re-
calculated as follows: 
 

82918.0

)60000.02000.1(
2

152000.1

)(
2

15
2

=

−
−

−=

−
−

−= luu xxxx

 

 
To check the stopping criteria the difference between ux  and lx  is calculated to be 
 

60000.0
60000.02000.1

=
−=− lu xx

 

 
which is greater than 05.0=ε . At the end of the second iteration the solution is  
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90000.0
2

60000.02000.1
2

=

+
=

+ lu xx
 

Therefore, the maximum area occurs when 9.0=θ radians or 6.51  . 
The iterations will continue until the stopping criterion is met. Summary results of all the 
iterations are shown in Table 1. Note that at the end of the 9th iteration, 05.0<ε  which 
causes the search to stop. The optimal value is calculated as the average of the upper and 
lower boundary points. 
 

0416.1
2

0583.10249.1
2

=

+
=

+ lu xx
 

 
which is about 68.59 . The area of the gutter at this angle is 1960.5)0416.1( =f . The 
theoretical optimal solution to the problem happens at exactly 60° which is 1.0472 radians 
and an area of 5.1962. 
 
 

Table 1  Summary of iterations for Example 1 
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Iteration lx  ux  1x  2x  )( 1xf  )( 2xf  ε  
1 0.00000 1.5708 0.97081 0.59999 5.1654 4.1226 1.5708 
2 0.59999 1.5708 1.2000 0.97081 5.0791 5.1654 0.97081 
3 0.59999 1.2000 0.97081 0.82917 5.1654 4.9418 0.59999 
4 0.82917 1.2000 1.0583 0.97081 5.1955 5.1654 0.37081 
5 0.97081 1.2000 1.1124 1.0583 5.1743 5.1955 0.22918 
6 0.97081 1.1124 1.0583 1.0249 5.1955 5.1936 0.14164 
7 1.0249 1.1124 1.0790 1.0583 5.1909 5.1955 0.08754 
8 1.0249 1.0790 1.0583 1.0456 5.1955 5.1961 0.05410 
9 1.0249 1.0583 1.0456 1.0377 5.1961 5.1957 0.03344 
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Chapter 09.02 
Newton’s Method 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. Understand how Newton’s method is different from the Golden Section Search 
method 

2. Understand how Newton’s method works 
3. Solve one-dimensional optimization problems using Newton’s method 

 
 
How is the Newton’s method different from the Golden Section Search method? 
The Golden Section Search method requires explicitly indicating lower and upper boundaries 
for the search region in which the optimal solution lies. Such methods where the boundaries 
need to be specified are known as bracketing approaches in the sense that the optimal 
solution is bracketed by these boundaries. 
Newton’s method is an open (instead of bracketing) approach, where the optimum of the 
one-dimensional function ( )xf   is found using an initial guess of the optimal value without 
the need for specifying lower and upper boundary values for the search region. 
Unlike the bracketing approaches, open approaches are not guaranteed to converge. 
However, if they do converge, they do so much faster than bracketed approaches. Therefore, 
open approaches are more useful if there is reasonable evidence that the initial guess is close 
to the optimal value. Otherwise, if there is doubt about the quality of the initial guess, it is 
advisable to use bracketing approaches to bring the guess closer to the optimal value and then 
use an open approach benefiting from the advantages presented by both techniques. 
 
What is the Newton’s method and how does it work? 
Newton’s method is an open approach to find the minimum or the maximum of a function 
( )xf . It is very similar to the Newton-Raphson method 

http://numericalmethods.eng.usf.edu/topics/newton_raphson.html to find the roots of a 
function such that ( ) 0=xf .  Since the derivative of the function ( )xf , ( ) 0' =xf  at the 
functions maximum and minimum, the minima and the maxima can be found by applying the 
Newton-Raphson   method to the derivative, essentially obtaining 

http://numericalmethods.eng.usf.edu/topics/newton_raphson.html
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We caution that before using Newton’s method to determine the minimum or the maximum 
of a function, one should have a reasonably good estimate of the solution to ensure 
convergence, and that the function should be easily twice differentiable. 
 
Derivation of the Newton-Raphson Equation 
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We “wish” that in the next iteration  1+iX  will be the root, or  0)( 1 =+iXF  . 
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Step by step use of Newton’s method  
The following algorithm implements Newton’s method to determine the maximum or 
minimum of a function ( )xf . 
Initialization 
Determine a reasonably good estimate 0x  for the maxima or the minima of the function 
( )xf . 

Step 1  
Determine ( )xf ' and ( )xf ''  . 
Step 2  
Substitute 1+ix , the initial estimate 0x  for the first iteration, ( )xf '  and ( )xf ''  into Eqn. 1 to 
determine ix  and the function value in iteration i . 
Step 3 
If the value of the first derivative of the function is zero, then you have reached the optimum 
(maxima or minima), otherwise repeat Step 2 with the new value of ix  until the absolute 
relative approximate error is less than the pre-specified tolerance.  
 
Example 1 
Consider Figure 1 below. The cross-sectional area A  of a gutter with equal base and edge 
length of 2 is given by  

)cos1(sin4 θθ +=A  
Find the angle θ  which maximizes the cross-sectional area of the gutter.  
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Figure 1: Cross section of the gutter 
 
Solution  

The function to be maximized is )cos1(sin4)( θθθ +=f . The first and second derivative of 
the function is shown below. 

)sincos(cos4)( 22 θθθθ −+=′f  
)cos41(sin4)( θθθ +−=′′f  

Let us use 4/0 πθ = as the initial estimate of θ . Using Eqn. (1), we can calculate the first 
iteration follows: 
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The function is evaluated at the first estimate as 1962.5)0466.1( =f . The next iteration uses 
0466.11 =θ  as the best estimate ofθ . Using Eqn(1) again, the second iteration is calculated 

as follows: 
 

1=i  

θ θ 
2 

2 
2 
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The iterations will continue until the solution converges to a single optimal solution. 
Summary results of all the iterations are shown in Table 1.  
Several important observations regarding the 5th iteration can be made.  At each iteration, the 
magnitude of the first derivative gets smaller and approaches zero. A value of zero of the first 
derivative tells us that we have reached the optimal and we can stop. Also note that the sign 
of the second derivative is negative which tells us that we are at a maximum. This value 
would have been positive if we had reached a minimum. The solution tells us that the optimal 
angle is 1.0472. Remember that the actual solution to the problem is at 60 degrees or 1.0472 
radians. See Example 2 in Golden Search Method 
http://numericalmethods.eng.usf.edu/topics/opt_goldensearch.html. 
 
 
Table 1. Summary of iterations for Example 1 

Iteration iθ  )( if θ′  )( if θ′′  1+iθ  )( 1+if θ  
1 0.78540 2.8284 -10.828 1.0466 5.1962 
2 1.0466 0.0061898 -10.396 1.0472 5.1962 
3 1.0472 1.0613E-06 -10.392 1.0472 5.1962 
4 1.0472 3.0642E-14 -10.392 1.0472 5.1962 
5 1.0472 1.3323E-15 -10.392 1.0472 5.1962 

 
 
 

OPTIMIZATION  
Topic Newton’s Method 
Summary Textbook notes for the Newton’s method 
Major All engineering majors 
Authors Ali Yalcin  
Date August 17, 2011  
Web Site http://numericalmethods.eng.usf.edu 

 

http://numericalmethods.eng.usf.edu/topics/opt_goldensearch.html


09.03.1 

 
 
 
 
Chapter 09.03 
Multidimensional Direct Search Method 
 
 
 
After reading this chapter, you should be able to: 

1. Understand the fundamentals of the multidimensional direct search methods 
2. Understand how the coordinate cycling search method works 
3. Solve multi-dimensional optimization problems using the coordinate cycling search 

method 
 

Optimization Techniques 
Methods for finding optimal solutions in multidimensional spaces are not too different than 
their cousins used in finding optimal solutions in a single dimension. The trade-off between 
general applicability versus computational complexity also exists in multidimensional 
optimization. The multidimensional direct search methods we will cover in this chapter, like 
the one-dimensional Golden Section Search method 
(http://numericalmethods.eng.usf.edu/topics/opt_goldensearch.html), does not require a 
differentiable function. These methods are sometimes referred to as Zeroth Order Algorithms 
because it is not required to differentiate the optimization function. 
 Probably the most obvious solution to an optimization problem in multidimensional 
space is to systematically evaluate every possible solution and select the maximum or the 
minimum depending on our objective. This is a very generally applicable approach and may 
even be useful if the solution space is relatively small. However, as the dimensions of the 
problem space, (number of independent variables), increase, the computational complexity of 
this solution approach quickly becomes unmanageable. Therefore, we are interested in 
methods that intelligently search through the solution space to find an optimal solution 
without enumerating all possible solutions. 
 It is important to note that some of the popular optimization techniques you may have 
heard of such as simulated annealing, tabu search, neural networks and genetic algorithms all 
fall under this family of optimization techniques. 
 
What is the Coordinate Cycling Search Method and How Does it Work? 
The coordinate cycling search method, starts from an initial point and looks for an optimal 
solution along each coordinate direction iteratively. For example, using a function ),( yxf  
with two independent variables x  and y , and starting at point ),( 00 yx ; the first iteration will  
move along direction (1, 0), until an optimal solution is found for the function ),( 0yxf . The 
next search involves searching along the direction (0,1) to determine the optimal value for 
the function ),( 1 yxf  where 1x is the solution found in the previous search. Once searches in 
all directions are completed, the process is repeated in the next cycle. The search will 

http://numericalmethods.eng.usf.edu/topics/opt_goldensearch.html
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continue until convergence occurs or a predetermined error limit is met. The search along 
each coordinate direction can be conducted by using anyone of the one-dimensional search 
techniques previously covered. A visual representation of how the search converges is shown 
below in Figure1. 
 

 
 
 
 
 
Example 1 

Consider Figure 2 below. The cross-sectional area A  of a gutter with a base length b  and an 
edge length of l  is given by  

θθ sin)cos2(
2
1 llbbA ++=  

Assuming that the width of the material to be bent into the gutter shape is 6 inches, find the 
angle θ  and edge length l  which maximizes the cross-sectional area of the gutter.  

Optimal point 

Initial search 
point 

Point after  
first cycle 

Point after 
third cycle 

Point after 
second cycle 

θ  

length  

Figure 1  Visual Representation of a Multidimensional Search 
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                                          Figure 2  Cross section of the gutter 
 
Solution 

Recognizing that the base length b can be expressed as lb 26 −= , we can re-write the area 
function to be optimized in terms of two independent variables giving 
 θθθ sin)cos26(),( llllf +−= . 

Let us consider an initial point )
6

,0( π . We will use the Golden Section Search method to 

determine the optimal solution along direction (1,0) namely the independent variable 
corresponding to the length of each side. To use the Golden Section Search method, we will 
use 0 and 3 as the lower and upper bounds, respectively for the search region (Can you 
determine why we are using 3 as the upper bound?) and look for the optimal solution of the 
function )52360.0,(lf  with a convergence limit of 05.0<ε . Table 1 below shows the 
iterations of the Golden Section Search method in the (1,0) direction. The maximum area of 
3.6964 2in is obtained at point )52360.0,6459.2(  .  
 
Table 1  Summary of the Golden Section Search iterations along direction (1,0) for Example 

1. Here 52360.0=θ and ( ) ( ) ( )( )52360.0sin52360.0cos26 lllxf i +−=  
Iteration lx  ux  1x  2x  )( 1xf  )( 2xf  ε  
1 0.0000 3.0000 1.8541 1.1459 3.6143 2.6941 3.0000 
2 1.1459 3.0000 2.2918 1.8541 3.8985 3.6143 1.8541 
3 1.8541 3.0000 2.5623 2.2918 3.9655 3.8985 1.1459 
4 2.2918 3.0000 2.7295 2.5623 3.9654 3.9655 0.7082 
5 2.2918 2.7295 2.5623 2.4590 3.9655 3.9497 0.4377 
6 2.4590 2.7295 2.6262 2.5623 3.9692 3.9655 0.2705 
7 2.5623 2.7295 2.6656 2.6262 3.9692 3.9692 0.1672 
8 2.5623 2.6656 2.6262 2.6018 3.9692 3.9683 0.1033 
9 2.6018 2.6656 2.6412 2.6262 3.9694 3.9692 0.0639 
10 2.6262 2.6656 2.6506 2.6412 3.9694 3.9694 0.0395 

 

l 

θ θ b 
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To search along the (0,1) direction corresponding to the angle θ , we again use the Golden 
Section Search method, but in this case using the function ),6459.2( θf . Table 2 below 
shows the iterations of the Golden Section Search method in the (0,1) direction. Note that at 
the new optimal point )8668.0,6459.2( , the approximation of the maximum area is improved 
to 4.8823 2in . 
 

Table 2  Summary of the Golden Section Search iterations along direction (0,1). Here 
6459.2=l and ( ) ( ) θθ sin6549.2cos6549.26549.226 ×××+×−=ixf  

Iteration lx  ux  1x  2x  )( 1xf  )( 2xf  ε  
1 0.0000 1.5714 0.9712 0.6002 4.8084 4.3215 1.5714 
2 0.6002 1.5714 1.2005 0.9712 4.1088 4.8084 0.9712 
3 0.6002 1.2005 0.9712 0.8295 4.8084 4.8689 0.6002 
4 0.6002 0.9712 0.8295 0.7419 4.8689 4.7533 0.3710 
5 0.7419 0.9712 0.8836 0.8295 4.8816 4.8689 0.2293 
6 0.8295 0.9712 0.9171 0.8836 4.8672 4.8816 0.1417 
7 0.8295 0.9171 0.8836 0.8630 4.8816 4.8820 0.0876 
8 0.8295 0.8836 0.8630 0.8502 4.8820 4.8790 0.0541 
9 0.8502 0.8836 0.8708 0.8630 4.8826 4.8820 0.0334 

 
After completing these two iterations, we use the optimal point to start a new cycle. Table 3 
shows the first set of iterations for the second cycle. 
 

Table 3  Summary of the Golden Section Search iterations along direction (1,0) 
Iteration lx  ux  1x  2x  ( )1xf  ( )2xf  ε  
1 0.0000 3.0000 1.8541 1.1459 4.9354 3.8871 3.0000 
2 1.1459 3.0000 2.2918 1.8541 5.0660 4.9354 1.8541 
3 1.8541 3.0000 2.5623 2.2918 4.9491 5.0660 1.1459 
4 1.8541 2.5623 2.2918 2.1246 5.0660 5.0627 0.7082 
5 2.1246 2.5623 2.3951 2.2918 5.0391 5.0660 0.4377 
6 2.1246 2.3951 2.2918 2.2279 5.0660 5.0715 0.2705 
7 2.1246 2.2918 2.2279 2.1885 5.0715 5.0708 0.1672 
8 2.1885 2.2918 2.2523 2.2279 5.0704 5.0715 0.1033 
9 2.1885 2.2523 2.2279 2.2129 5.0715 5.0716 0.0639 
10 2.1885 2.2279 2.2129 2.2035 5.0716 5.0714 0.0395 

 
Here 8668.0=θ and ( ) ( ) ( )( )8668.0sin8668.0cos26 lllxf i +−= . Note that we still use the 
initial intervals chosen for ix and ux values throughout the cycles. 
 
Since this is a two-dimensional search problem, the two searches along the two dimensions 
completes the first cycle. In the next cycle, we return to the first dimension for which we 
conducted a search, namely l , and start the second cycle with a search along this dimension. 
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Namely, look for the optimal solution of the function )8668.0,(lf . Each cycle consists of 
enough iterations to satisfy the predetermined convergence limit. 
 After the fifth cycle, the optimal solution of )0420.1,0016.2(  with an area of 
5.1960 2in  is obtained. The optimal solution to the problem happens at exactly 060 which is 
1.0472 radians, having an edge and base length of 2 in .The area of the gutter at this point is 
5.1962 2in . Therefore folding the sheet metal in such a way that the base is 2 in  and the sides 
are 2 in at an angle of 060 maximizes the area of the gutter. 
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Chapter 09.04 
Multidimensional Gradient Method 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. Understand how multi-dimensional gradient methods are different from direct search 
methods 

2. Understand the use of first and second derivatives in multi-dimensions 
3. Understand how the steepest ascent/descent method works 
4. Solve multi-dimensional optimization problems using the steepest ascent/descent 

method 
 
 
How do gradient methods differ from direct search methods in multi-dimensional 
optimization? 
The difference between gradient and direct search methods in multi-dimensional 
optimization is similar to the difference between these approaches in one-dimensional 
optimization. Direct search methods are useful when the derivative of the optimization 
function is not available to effectively guide the search for the optimum. While direct search 
methods explore the parameter space in a systematic manner, they are not computationally 
very efficient. On the other hand, gradient methods use information from the derivatives of 
the optimization function to more effectively guide the search and find optimum solutions 
much quicker. 
 
Newton’s Method 
When Newton’s Method 
(http://numericalmethods.eng.usf.edu/topics/opt_newtons_method.html) was introduced as a 
one-dimensional optimization method, we discussed the use of the first and second derivative 
of the optimization function as sources of information to determine if we have reached an 
optimal point (where the value of the first derivative is zero). If that optimal point is a 
maximum, the second derivative is negative. If the point is a minimum, the second derivative 
is positive. 
 

http://numericalmethods.eng.usf.edu/topics/opt_newtons_method.html
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What are Gradients and Hessians and how are Gradients and Hessians used in multi-
dimensional optimization? 
Gradients and Hessians describe the first and second derivatives of functions, respectively in 
multiple dimensions and are used frequently in various gradient methods for multi-
dimensional optimization. We describe these two concepts of gradients and Hessians next. 
 
Gradient:  
The gradient is a vector operator denoted by ∇  (referred to as “del”) which, when applied to 
a function f , represents its directional derivatives. For example, consider a two dimensional 
function ( )yxf ,  which shows elevation above sea level at points x  and y . If you wanted to 
move in the direction that would gain you the most elevation, this direction could be defined 
along a direction h  which forms an angle θ  with the x -axis. For an illustration of this, see 
Figure 1. The elevation along this new axis can be described by a new function )(hg  where 
your current location is the origin of the new coordinate axis or 0=h . The slope in this 
direction can be calculated by taking the derivative of the new function )(hg  at this point, 
namely ).0(g ′  The slope is then calculated by  

θθ in
y
f

x
fg scos)0(

∂
∂

+
∂
∂

=′  

                               
                                        Figure 1. Determining elevation along a new axis 
 
The gradient is a special case where the direction of the vector gains the most elevation, or 
has the steepest ascent. If the goal was to decrease elevation, then this would be termed as the 
steepest descent.  
The gradient of ( )yxf ,  or  f∇   is the vector pointing in the direction of the steepest slope at 
that point. The gradient is calculated by  

ji
y
f

x
ff

∂
∂

+
∂
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Example 1    
Calculate the gradient to determine the direction of the steepest slope at point (2, 1) for the 
function ( ) 22, yxyxf =  . 
Solution 
To calculate the gradient; the partial derivatives must be evaluated as 
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which are used to determine the gradient at point (2,1) as 
j8i4 +=∇f  

Traveling along this direction, we would gain elevation equal to the magnitude of the 
gradient which is 94.884 22 =+=∇f . Note that there is no other direction along which we 
can move to increase the slope. 
 
Hessians:  
The Hessian matrix or just the Hessian, is the Jacobian Matrix of the second-order partial 
derivatives of a function. For example, in a two dimensional function the Hessian matrix is 
simply  
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The determinant of the Hessian matrix is also referred to as the Hessian. 
 
Example 2  

Calculate the Hessian at point (2, 1) for the function ( ) 22, yxyxf = . 
Solution 
To calculate the Hessian, we would need to calculate 
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and the resulting Hessian matrix is 









=

88
82

H  

Based on your knowledge of how second derivatives are used in one-dimensional 
optimization, you may guess that the value of the second derivatives in multi-dimensional 
optimization will tell us if we are at a maxima or minima. In multi-dimensional optimization, 
the Hessian of the optimization function contains the information of the second derivatives of 
the function, and is used to make such a determination. The determinant of the Hessian 
matrix denoted by H can have three cases: 

      1. If 0>H and  0/ 22 >∂∂ xf then ( )yxf , is a local minimum. 

      2. If 0>H and  0/ 22 <∂∂ xf then ( )yxf , is a local maximum. 

      3. If 0<H  then ( )yxf , is a saddle point. 

Referring to Example 2, since 048 <−=H , then point (2, 1) is a saddle point.  
Hessians are also used in determining search trajectories in more advanced multi-
dimensional gradient search techniques such as the Marquardt Method which is beyond the 
scope of this module. 
 
What is the Steepest Ascent (or Descent) method and how does it work? 
In any multi-dimensional optimization algorithm, there are two key questions to be asked 
when searching for an optimal solution. The first one is about the direction of travel. The 
concept of gradients provides the answers to this question, at least in the short term. The 
second question is how long one should pursue a solution in this direction before 
reevaluating an alternative direction. If a re-evaluation strategy is executed too often, it 
increases computational costs. If it is executed too infrequently, one may end up pursuing a 
direction that may take the search away from the optimal solution. The steepest ascent 
algorithm proposes a simple solution to the second question by arbitrarily choosing a step 
size h . The special case where *hh = is referred to as the optimal steepest descent where 

*h brings us to the local maximum along the direction of the gradient. Consider the following 
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example which illustrates the application of the optimal steepest ascent method to a multi-
dimensional optimization problem. 
  
Example 3  

Determine the minimum of the function ( ) 42, 22 +++= xyxyxf  . Use the point ( )1,2  as 
the initial estimate of the optimal solution. 
Solution 

Iteration 1:  
To calculate the gradient; the partial derivatives must be evaluated as 

62)2(222 =+=+=
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2)1(22 ===
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y
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which are used to determine the gradient at point (2,1) as 
j2i6 +=∇f  

Now the function ( )yxf ,  can be expressed along the direction of gradient as 

4)62(2)21()62()21,62(, 22
00 ++++++=++=
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Multiplying out the terms we obtain the one dimensional function along the gradient as  
134040)( 2 ++= hhhg  

This is a simple function and it is easy to determine 5.0* −=h  by taking the first derivative 
and solving for its roots. This means that traveling a step size of 5.0−=h  along the gradient 
reaches a minimum value for the function in this direction. These values are substituted back 
to calculate a new value for x  and y  as follows: 

0)5.0(21
1)5.0(62

=−+=
−=−+=

y
x

 

Calculating the new values of x  and y  concludes the first iteration. Note that ( ) 30,1 =−f  is 
less than ( ) 131,2 =f  which indicates a move in the right direction. 
Iteration 2:  
The new initial point is ( )0,1− .We calculate the gradient at this point as 

02)1(222 =+−=+=
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∂ x

x
f  

0)0(22 ===
∂
∂ y

y
f  

which are used to determine the gradient at point ( )0,1− as 
j0i0 +=∇f  

This indicates that the current location is a local optimum and no improvement can be gained 
by moving in any direction. To ensure that we have reached a minimum, we can calculate the 
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Hessian of the function. To determine the Hessian, the second partial derivatives are 
determined and evaluated as follows 
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The resulting Hessian matrix and its determinant are 
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=H  

Since 0>H and  0/ 222 >∂∂ xf then ( )0,1−f  is a local minimum. 
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Chapter 09.05 
Simplex Method 
 
 
 
After reading this chapter, you should be able to: 
 

1. Formulate constrained optimization problems as a linear program 
2. Solve linear programs with graphical solution approaches 
3. Solve constrained optimization problems using simplex method 

 
What is linear programming? 
Linear programming is an optimization approach that deals with problems that have specific 
constraints. The one-dimensional and multi-dimensional optimization problems previously 
discussed did not consider any constraints on the values of the independent variables. In 
linear programming, the independent variables which are frequently used to model concepts 
such as availability of resources or required ratio of resources are constrained to be more 
than, less than or equal to a specific value. 
The simplest linear program requires an objective function and a set of constraints. The 
objective function is either a maximization or a minimization of a linear combination of the 
independent variables of the problem and is expressed as (for a maximization problem) 

nn xcxcxcz +++= ...max 2211  
where ic  expresses the contribution (e.g. cost, profit etc) of each unit of ix  to the objective of 
the problem, and ix  are the independent or more commonly referred to as the decision 
variables whose values are determined by the solution of the problem. 
 
The constraints are also a linear combination of the decision variables commonly expressed 
as an inequality of the form  

ininii bxaxaxa ≤+++ ...2211  
where ija  and ib are constant coefficients determined from the problem description as they 
relate to the constraints on the availability, interaction, and use of the resources.  
 
Example 1 
A woodworker builds and sells band-saw boxes. He manufactures two types of boxes using a 
combination of three types of wood, maple, walnut and cherry. To construct the Type I box, 
the carpenter requires 2 board foot (bf) (The board foot is a specialized unit of measure for 
the volume of lumber. It is the volume of a one-foot length of a board one foot wide and one 
inch thick) maple and 1 bf walnut. To construct the Type II box, he requires 3 bf of cherry 
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and 1 bf of walnut.  Given that he has 10 bf of maple, 5 bf of walnut and 11 bf of cherry and 
he can sell Type I of box for $120 and Type II box for $160, how many of each box type 
should he make to maximize his revenue? Assume that the woodworker can build the boxes 
in any size, therefore fractional solutions are acceptable. 
Solution 
The decision variables in this problem are the number of Type I and II boxes to be built. 
They are denoted by 1x  and 2x  respectively. Since the goal is to maximize revenues and the 
revenues are a function of the number of boxes of each type sold, we can represent the 
objective function as 

21 160120max xxz +=  
One of the constraints in this problem is availability of different types of wood. Therefore, 
based on the number of boxes produced, the sum of the total wood requirement must be less 
than or equal to the available amount of wood for each type. We can represent this type of 
constraint with three inequalities referring to maple, cherry and walnut respectively as 
follows: 

5
113
102

21

2

1

≤+
≤
≤

xx
x
x

 

In addition, there are the non-negativity constraints which ensure that our solution does not 
have negative number of boxes. These constraints are shown as 

0, 21 ≥xx  
 
Graphical Solutions to Linear Programs 
Linear programs of two or three dimensions can be solved using graphical solutions. While 
graphical solutions are not useful in addressing realistic size problems, they are particularly 
helpful in providing an intuitive explanation to the algebraic methodologies used to solve 
larger linear programs using computer algorithms. The graphical solution to linear programs 
is best explained by using an example. 
 
Example 2 
Provide a graphical solution to the linear program in Example 1. 
Solution 

For a linear inequality of the form bxxf ≤),( 21  or bxxf ≥),( 21 , the points that satisfy the 
inequality includes the points on the line and the points on one side of the line. For example 
for the inequality 102 1 ≤x , the shaded region in Figure 1 shows the points that satisfy this 
inequality. To determine which side of the line satisfies the inequality, simply test a single 
point in each region, such as the origin (0, 0) which satisfies the constraint and lies on the 
right side of the line in the shaded region. 
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                           Figure 1. Graphical representation of the points satisfying 102 1 ≤x . 
 
The set of points that satisfy all the constraints, including non-negativity constraints, from 
Example 1 are shown in Figure 2. The region which contains the points that satisfies all the 
constraint in a linear program is referred to as the feasible region.  
 
                                         

                                            
                                  Figure 2. Graphical representation of the feasible region. 
 
The objective function can also be represented by a line referred to as the isoprofit line  
(isocost line for minimization problems).  To determine this line, simply assume a value for 
z such as 0=z . Then the objective function can be written as  

21 1601200 xx +=  

112 4
3

160
120 xxx −=−=  

where the isoprofit line has a slope of 4
3− . The isoprofit line is shown as a dashed line 

through the origin in Figure 3. To determine the optimal solution, the isoprofit line is moved 
parallel to the original line drawn with slope 4

3−  in the direction that increases z until the 

 

 

 

 

Comment [AY1]: Shading is not visible in these 
figures when printed. Maybe Russell can look into 
formatting it. 
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last point intersecting the feasible region is obtained. Such a point is reached at a single point 









3
11,

3
4

 as shown in Figure 3. 

                                           
                             Figure 3. Graphical representation of the optimal solution. 
 
At the optimal solution, the value of the objective function is calculated as  

3
2746

3
11160

3
4120 =×+×  

The optimal solution when substituted back into the inequalities representing the structure of 
the problem reveals some additional important information about the problem. Below is the 
original set of constraints where the optimal solution to the problem is substituted in place of 
the decision variables. Note that the last two equations are now equalities indicating that the 
availability of the resources associated with these constraints (cherry and walnut) are 
preventing us from improving the value of the objective function. Such constraints are 
referred to as binding constraints. Note also that in the graphical solution, the optimal 
solution lies at the intersection of the binding constraints. On the other hand, the first 
inequality is a nonbinding constraint in the sense that the left-hand and the right-hand side of 
the constraint are unequal and this constraint does not pose a limitation to the optimal 
solution. In other words, if want to increase our revenues, we need to look into increasing the 
availability of cherry and walnut and not maple. 

5
3

11
3
4

11
3

113

10
3
42

=+

=×

<×

 

Solutions to Linear Programs 
Solutions to linear programs can be one of two types as follows: 

Optimal Solution 
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1. Unique solution:  
As seen in the solution to Example 2, there is a single point in the feasible region for which 
the maximum (or minimum in a minimization problem) value of the objective function is 
attainable. In graphical solutions, these points lie at the intersection of two or more lines 
which represent the constraints. 
2. Alternate Solutions: 
 If the isoprofit (isocost) line is parallel to one of the lines representing the constraints, then 
the intersection would be an infinite number of points. In this case, any of such points would 
produce the maximum (minimum) value of the objective function. 

A set of points S  is said to be a convex set if the line segment joining any pair of 
points in S is also completely contained in S . For example, the feasible region shown in 
Figure 2 is a convex set. This is no coincidence. It can be shown that the feasible region of 
any linear program is a convex set.  

Figure 4 shows the feasible region of Example 2 and highlights the corner points (also 
known as extreme points) of the convex set which occur where two or more constraints 
intersect within the feasible region. These extreme points are of special importance. Any 
linear program that has an optimal solution has an extreme point that is optimal. This is a 
very important result because it greatly reduces the number of points which may be optimal 
solutions to the linear program. For example, the entire feasible region shown in Figure 2 
contains an infinite number of points, however the feasible region contains only four extreme 
points which may be the optimal solution to the linear program.  
 
 

                                       
                   Figure 4. Graphical representation of the feasible region and its extreme points. 
 
Once all the extreme points are determined, finding the optimal solution is trivial in the sense 
that the value of the objective function at each of these points can be calculated and, 
depending on the goal of the objective function, the extreme point resulting in the minimum 
or the maximum value is selected as the optimal solution. The simplex method which is the 
topic of next section is a much more efficient way of evaluating the extreme points in a 
convex set to determine the optimal solution.  
 

 

 

A 

B 

C D 
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The Simplex Method 

Converting a linear program to Standard Form 
Before the simplex algorithm can be applied, the linear program must be converted into 
standard form where all the constraints are written as equations (no inequalities) and all 
variables are nonnegative (no unrestricted variables). This process of converting a linear 
program to its standard form requires the addition of slack variable is  which represents the 
amount of the resource not used in the ith  ≤ constraint. Similarly, ≥ constraints can be 
converted into standard form by subtracting excess variable ie . 
The standard form of any linear program can then be represented by the following linear 
system with n  variables (including decision, slack and excess variables) and m  constraints. 

),...,2,1(   0

...
...............

...

.....

...
min)(
 max

2211

22222121

11212111

2211

nix

bxaxaxa
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xcxcxc
or

z

i

mnmnmm

nn

nn

nn
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Example 3 
Convert the linear program in Example 1 to its standard form.  
Solution 
For convenience, the linear program is reproduced below.   

21 160120  xxZMax +=  

0,
5

113
102

21

21

2

1

≥
≤+

≤
≤

xx
xx

x
x

 

To convert the first constraint form an inequality to equality, we introduce the first slack 
variable 1s where 

11 210 xs −=  or 102 11 =+ sx . 
Similarly after introducing 2s and 3s , we can convert the linear program into standard form 
as follows: 
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Basic and Nonbasic Variables, and Basic Feasible Solutions 
If we define 
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the constraints of the standard form of a linear program can be simply represented by a 
system of simultaneous equations bx =A . 

A basic solution to system of m  linear equations with n unknowns is found by setting 
mn − variables to zero and solving the m  equations for the remaining m  variables. The 

variables with zero values are referred to as the nonbasic variables and the remaining m 
variables are called the basic variables. Note that the choice of different nonbasic variables 
will lead to different solutions. If all basic variables are nonnegative, the solution is called a 
basic feasible solution. The optimum solution will be one of the basic feasible solutions. Let 
us illustrate this with an example. 
 
Example 3 
Determine a basic feasible solution for the linear program in Example 1.  
Solution 
The system of equation representing the constraints for this linear program is as follows: 

5
113
102

321

22

11
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=++
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sxx
sx

sx
 

where 5=n and 3=m . To obtain a basic feasible solution we need to set 2=−mn nonbasic 
variables to zero and solve the remaining system of 33× linear equations. Let us start with 
setting values of  21  and xx  to zero. We can easily see that the solution to the system becomes 

  5 
11 
10  

3

2

1

=
=
=

s
s
s

 

In this solution, all basic variables are nonnegative; therefore the solution is a basic feasible 
solution.  
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Relationship between extreme points of a feasible region and basic feasible solutions 
To establish the relationship between basic feasible solutions and extreme points of the 
feasible region, refer to Figure 4. The above basic feasible solution corresponds to the 
extreme point C  at the origin since in this basic feasible solution 0 and 0 21 == xx  . 
Alternatively, if we set the values of  23  and xs  to zero, we see that we obtain the basic 
feasible solution where 11  and ,5  ,5  211 === ssx which corresponds to the extreme point D  
in Figure 4. 

There is a special relationship between extreme points C  and D  arising from their 
adjacency that is relevant to the simplex method. For a linear program with m constraints, 
two basic feasible solutions are adjacent if they have 1−m  basic variables in common. In the 
basic feasible solutions corresponding to adjacent points C  and D , the 1−m  common basic 
variables are 11  and ,5  21 == ss . 
 
The Simplex Algorithm 
The simplex algorithm, instead of evaluating all basic feasible solutions (which can be 
prohibitive even for moderate-size problems), starts with a basic feasible solution and moves 
through other basic feasible solutions that successively improve the value of the objective 
function. The algorithm terminates once the optimal value is reached. Below we present a 
step-wise description of the simplex algorithm. 

1. Convert the linear program into standard form. 
2. Obtain a basic feasible solution from the standard form. 
3. Determine if the basic feasible solution is optimal. 
4. If the current basic feasible solution is not optimal, select a nonbasic variable that 

should become a basic variable and basic variable which should become a nonbasic 
variable to determine a new basic feasible solution with an improved objective 
function value. 

5. Use elementary row operations to solve for the new basic feasible solution. Return to 
Step 3 

 
Steps 1 and 2 of the algorithm have been previously discussed. Steps 3, 4 and 5 of the 
algorithm are best executed with the help of a tableau which is simply a table with a 
particular format that shows a summary of the key information regarding the linear program. 
For example the tableau shown in Table 1 below corresponds to the linear program described 
in Example 1 and the basic feasible solution in Example 3. There are several things to note 
about Table 1. 
 

1. The first row of the table (also called row 0) corresponds to the objective function 
where all the variables are on the left-hand side following the format 

2. 0160120 21 =−− xxz  
3.  The basic feasible solution corresponds to the solution in Example 3. In addition note 

that variable 0=z  is also considered as a basic variable. 
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4. In this particular example, the initial tableau where the decision variables 
21  and xx are considered as nonbasic variables leads to a basic feasible solution due to 

the fact that all the right hand side variables are nonnegative. 
5. The tableau is in proper form which means the solution can be read directly by 

looking at the tableau and the RHS values. For a tableau to be in proper form it must 
meet all the following requirements: 

one basic variable per row 
the coefficient of all basic variables are +1 and the coefficients above and below the basic 
variables are zero 
z  is the basic variable for row 0 
 
         Table 1.The initial tableau for example on in proper form 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 -160 0 0 0 0  

1s  0 2 0 1 0 0 10 None 

2s  0 0 3 0 1 0 11 
3

11  

3s  0 1 1 0 0 1 5 5 
 
In step 3, to determine if a basic feasible solution is optimal, we need to determine if any of 
the nonbasic variables (who has value zero) can be increased to improve the value of the 
objective function. For example, in Table 1, since 21 160120 xxz += , increasing either one of 
the nonbasic variables 21  and xx would increase the value of the objective function value. In 
the tableau, this equates to looking for negative coefficients in row 0 due to the format the 
objective function is written. The basic feasible solution shown in Table 1 is therefore not 
optimal since the coefficients of 21  and xx are less than zero. 

To improve the solution, we can increase the value of either 21 or  xx . We choose to 
increase 2 x  since the value of the objective function increases at a higher rate (160 vs. 120 
per unit of increase). The nonbasic variable with the most negative coefficient (in a 
maximization problem) in row 0, in this case 2 x , is called the entering variable and is always 
selected as the nonbasic variable that becomes a basic variable. 

The basic variable that is replaced by the entering variable, also called the leaving 
variable, is determined by looking at the values in the “Ratio” column in the tableau. The 
values in this column are simply the ratio of the RHS values divided by the coefficient of the 
entering variable in that row. The leaving variable is selected to be the basic variable in the 
row with the smallest ratio. This is the highest value that the entering variable can have and 
still result in a basic feasible solution. For the tableau shown in Table 1, the leaving variable 
is 2s in row 3. 

Once the entering and leaving variables are determined, we use elementary row 
operations (add link?) (EROs) to make the entering variable a basic variable in the row of the 
leaving variable by making its coefficient 1 in that row and 0 in all other rows. For example, 
for Table 1 where the entering and leaving variables are  22  and sx  respectively, after the 
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EROs, the tableau is shown in Table 2.  The tableau shows a new basic feasible solution 
(note that all RHS are nonnegative) where 

                   3
4 

3
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10  

3

2

1
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=

=

s

x

s

 

This basic feasible solution corresponds to the adjacent extreme point A in Figure 4 with 
coordinates 3

11 and 0 21 == xx  and objective function value 3
1760  . 

 
Table 2.The tableau for the basic feasible solution corresponding to extreme point A in 
proper form. 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 0 0 

3
160

 
0 

3
1760   

1s  0 2 0 1 0 0 10 5  
2x  0 0 1 0 

3
1  0 

3
11  None 

3s  0 1 0 0 
3

1−  1 
3

4  3
4  

 
After a new basic feasible solution is obtained, the algorithm returns to Step 3 to check if the 
new basic feasible solution is optimal. This cycle continues until the objective function value 
cannot be increased by increasing the value of any of the nonbasic variables. In other words, 
in a maximization problem, this is the same as having no negative valued coefficients in row 
0.  
A note about minimization problems: 
 It is important to note that the optimality condition of no negative valued coefficients in row 
0 is only applicable in maximization problems. In a minimization problem, the optimality 
condition exists when none of the coefficients in row 0 are positive.  Furthermore, in 
minimization problems, the entering variable is chosen to be the nonbasic variable with the 
highest positive coefficient in row 0.  
Let us illustrate the simplex algorithm by solving the problem presented in Example 1.  
 
Example 4 
Solve the linear program in Example 1using the simplex algorithm.  
Solution 

Step 1: 
Convert the linear program into standard form. 
The linear program in standard form is 
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Step 2:  
Obtain a basic feasible solution from the standard form. 
Previously we have shown that the solution where 0 and 0 21 == xx is a basic feasible 
solution so we will start the algorithm here. 
Step 3:  
Determine if the basic feasible solution is optimal.  
At this step we create the tableau for this basic feasible solution which was initially shown in 
Table 1. For convenience the table is reproduced as Table 3.  
 
Table 3.The initial tableau in proper form 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 -160 0 0 0 0  

1s  0 2 0 1 0 0 10 None 

2s  0 0 3 0 1 0 11 
3

11  

3s  0 1 1 0 0 1 5 5 
 
Step 4: 
 If the current basic feasible solution is not optimal, select a nonbasic variable that should 
become a basic variable and basic variable which should become a nonbasic variable to 
determine a new basic feasible solution with an improved objective function value. 
The current solution is not optimal. There are negative coefficients in row 0.  Since 2x  has 
the most negative coefficient in row 0 and 2s  has the lowest ratio, the entering and the 
leaving variables are 22  and sx , respectively. 
Step 5:  
Use elementary row operations to solve for the new basic feasible solution. Return to Step 3 
The new basic feasible solution is shown in Table 4, which is the same as Table 2.  

 
Table 4.The tableau for the new basic feasible solution in the first iteration 

Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 -120 0 0 

3
160  0 

3
1760   

1s  0 2 0 1 0 0 10 5  
2x  0 0 1 0 

3
1  0 

3
11  None 

3s  0 1 0 0 
3

1−  1 
3

4  3
4  
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Step 3:   
Determine if the basic feasible solution is optimal.  
The basic solution in Table 4 is still not optimal as the objective function value can be 
increased by increasing the value of 1x .  
Step 4:  
If the current basic feasible solution is not optimal, select a nonbasic variable that should 
become a basic variable and basic variable which should become a nonbasic variable to 
determine a new basic feasible solution with an improved objective function value. 
In the second iteration, since 1x  has the most (and only) negative coefficient in row 0 and 3s  
has the lowest ratio, the entering and leaving variables are 31  and sx , respectively. 
Step 5:  
Use elementary row operations to solve for the new basic feasible solution. Return to Step 3 
The new basic feasible solution is shown in Table 5.  
 
Table 5.The tableau for the basic feasible solution in the second iteration . 
Basic Z  1x  2x  1s  2s  3s  RHS Ratio 
Z  1 0 0 0 

3
40  120 

3
2240   

1s  0 0 0 1 
3

2  -2 
3

22   

2x  0 0 1 0 
3

1  0 
3

11   

1x  0 1 0 0 
3

1−  1 
3

4   

 
Step 3: 
Determine if the basic feasible solution is optimal.  
Since there are no negative coefficients in row 0, we have reached the optimal solution where 
the objective function value is 3

2240  and  

0    
3

4 
3

11 
3

22  

32

1

2

1

==

=

=

=

ss

x

x

s

 

Note that all these values can be read from the tableau shown in Table 5. This solution also 
corresponds to the extreme point B in Figure 4 which was also determined to be optimal 
using the graphical solution approach. 
Finally, the woodworker should build 3

4  Type I boxes and 3
11  Type II boxes to maximize 

his revenue to $746.67.  
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Chapter 10.01 
Introduction to Partial Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. identify the difference between ordinary and partial differential equations. 
2. identify different types of partial differential equations. 

 
What is a Partial Differential Equation (PDE) 
 A differential equation with one independent variable is called an ordinary 
differential equation. An example of such an equation would be 

5)0(,353 2 ==+ − yey
dx
dy x  

where y  is the dependent variable, and x  is the independent variable. 
         
What if there is more than one independent variable? Then the differential equation is called 
a partial differential equation. An example of such an equation would be 

22
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2

2

2

3 yx
y
u

x
u

+=
∂
∂

+
∂
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subject to certain conditions: where u  is the dependent variable, and x  and y  are the 
independent variables. 
 
From Ordinary to a Partial Differential Equation 
Assume we put a spherical steel ball that is at room temperature in hot water. The 
temperature of the ball is going to increase with time. What if we wish to find what this 
temperature vs. time profile would look like for the ball?  We would develop a mathematical 
model for this based on the law of conservation of heat energy.  From an energy balance, 
Heat gained - Heat lost= Heat stored                                 (1) 
 
The energy stored in the mass is given by 

Heat stored in the ball θmC=                                                                           (2) 
where 

m  = mass of ball, kg  
 C  = specific heat of the ball, )/( KkgJ −  

θ = temperature of the ball at a given time, K  
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The rate of heat gained by the ball due to convection is 
 Rate of heat gained due to convection ( )ahA θθ −= ,                                                 (3) 
where 

h = the convective cooling coefficient, ( )Km −2/W . 
A  = surface area of ball, 2m  
=aθ  ambient temperature of the hot water, K  

As you can see we have the expression for the rate at which heat is gained (not the heat 
gained), so we rewrite the heat energy balance as  

Rate at which heat is gained - Rate at which heat is lost 
   =Rate at which heat is stored                               (4) 
This gives us  

( )
dt
dmChA a
θθθ =−                                                     (5) 

Equation (5) is a first order ordinary differential equation that when solved with the initial 
condition 0)0( θθ = , would give us the temperature of the spherical ball as a function of time. 

However, we made a large assumption in deriving Equation (5) - we assumed that the 
system is lumped.  What does a lumped system mean?  It implies that the internal conduction 
in the sphere is large enough that the temperature throughout the ball is uniform.  This allows 
us to make the assumption that the temperature is only a function of time and not of the 
location in the spherical ball.   The system being considered lumped for this case depends on: 
material of the ball, geometry, and heat exchange factor (convection coefficient) of the ball 
with its surroundings. 

Hot Water Spherical Ball 
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What happens if the system cannot be treated as a lumped system?  In that case, the 
temperature of the ball will now be a function not only of time, but also the location. 

 
In spherical co-ordinates, the location is given by r ,θ , φ  co-ordinates. 
 

 
Figure 1 Spherical Coordinate System. 
 

The differential equation would now be a partial differential equation and is given as 
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where 

k = thermal conductivity of material, )/( KmW −  
ρ = density of material, 3/ mkg  

As an introduction to solve PDEs, most textbooks concentrate on linear second order PDEs 
with two independent variables and one dependent variable. The general form of such an 
equation is 
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Where CBA and,, are functions of yx  and  and D  is a function of 
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Depending on the value of ACB 42 − , a 2nd order linear PDE can be classified into three 
categories. 

1. if 042 <− ACB , it is called elliptic 
2. if 042 =− ACB , it is called parabolic 
3. if 042 >− ACB , it is called hyperbolic 

 
Elliptic Equation 
The Laplace equation for steady state temperature in a plate is an example of an elliptic 
second order linear partial differential equation.  The Laplace equation for steady state 
temperature in a plate is given by 
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T                                                                                                             (8) 

   
Using the general form of second order linear PDEs with one dependent variable and two 
independent variables, 
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0,1,0,1 ==== DCBA , 
 
gives ACB 42 − )1)(1(40 −=  
        4−=  
                  04 <−=  
This classifies Equation (8) as elliptic. 
 
Parabolic Equation 
The heat conduction equation is an example of a parabolic second order linear partial 
differential equation.  The heat conduction equation is given by 
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Using the general form of second order linear PDEs with one dependent variable and two 
independent variables, 
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1,0,0, −==== DCBkA , 
 
gives ACB 42 − ))(0(40 k−=  
                 0=  
This classifies Equation (9) as parabolic. 
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Hyperbolic Equation 
The wave equation is an example of a hyperbolic second order linear partial differential 
equation.  The wave equation is given by 

2

2

22

2 1
t
y

cx
y

∂
∂

=
∂
∂                                                                                                           (10) 

Using the general form of second order linear PDEs with one dependent variable and two 
independent variables, 
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∂∂

∂
+

∂
∂ D

y
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yx
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x
uA  

0,1,0,1 2 =−=== D
c

CBA  

gives ACB 42 − )1)(1(40 2c
−

−=  

                  2

4
c

=
 

                             
04

2 >=
c  

This classifies Equation (10) as hyperbolic. 
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Chapter 10.02 
Parabolic Partial Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. Use numerical methods to solve parabolic partial differential equations by explicit, 
implicit, and Crank-Nicolson methods. 

 
The general second order linear PDE with two independent variables and one dependent 
variable is given by 

02

22

2

2

=+
∂
∂

+
∂∂

∂
+

∂
∂ D

y
uC

yx
uB

x
uA                                                                                 (1) 

where CBA ,, are functions of the independent variables, x  , y , and D  can be a function of 

x
uuyx
∂
∂,,,  and 

y
u
∂
∂ . If 042 =− ACB , Equation (1) is called a parabolic partial differential 

equation. One of the simple examples of a parabolic PDE is the heat-conduction equation for 
a metal rod (Figure 1) 

t
T

x
T

∂
∂

=
∂
∂

2

2

α                                                                                                                 (2) 

where 
=T  temperature as a function of location, x  and time, t  

in which the thermal diffusivity, α is given by 

C
k
ρ

α =  

where 
=k thermal conductivity of rod material, 
=ρ  density of rod material, 
=C  specific heat of the rod material. 
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Figure 1: A metal rod  

 
 
Explicit Method of Solving Parabolic PDEs  
To numerically solve parabolic PDEs such as Equation (2), one can use finite difference 
approximations of the partial derivatives so that the dependent variable, T  is now sought at 
particular nodes ( x -location) and time ( t ) (Figure 2). The left hand side second derivative is 
approximated by the central divided difference approximation as 

( )2
11

,
2

2 2
x

TTT
x
T j

i
j

i
j

i

ji ∆
+−

≅
∂
∂ −+                                                                                            (3) 

where 
=i node number along the −x direction, ni ,....,1,0= , 

j = node number along the time, 
x∆ = distance between nodes. 

 
Figure 2: Schematic diagram showing the node representation in the model 

 
For a rod of length L  which is divided into 1+n  nodes, 

n
Lx =∆                                                                                                                         (4) 

The time is similarly broken into time steps of t∆ . Hence j
iT  corresponds to the temperature 

at node i , that is,  
( )( )xix ∆=   

and time,  
( )( )tjt ∆= ,  

where 
=∆t time step. 

x

1−i i 1+i

x∆ x∆
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The time derivative of the right hand side of Equation (2) is approximated by the forward 
divided difference approximation 

t
TT

t
T j

i
j

i

ji ∆
−

≅
∂
∂ +1

,

                                                                                                      (5) 

Substituting the finite difference approximations given by Equations (3) and (5) in Equation 
(2) gives 

( ) t
TT

x
TTT j

i
j

i
j

i
j

i
j

i

∆
−

=
∆

+− +
−+

1

2
11 2

α  

Solving for the temperature at the time node 1+j , gives 

( )j
i

j
i

j
i

j
i

j
i TTT

x
tTT 112

1 2
)( −+

+ +−
∆
∆

+= α                                                                           

Choosing 

2)( x
t

∆
∆

=αλ                                                                                                                  (6) 

( )j
i

j
i

j
i

j
i

j
i TTTTT 11

1 2 −+
+ +−+= λ                                                                            (7) 

Equation (7) can be solved explicitly because it can be written for each internal location node 
of the rod for time node 1+j  in terms of the temperature at time node j . In other words, if 
we know the temperature at node 0=j , and knowing the boundary temperatures, which is 
the temperature at the external nodes, we can find the temperature at the next time step. We 
continue the process by first finding the temperature at all nodes 1=j , and using these to 
find the temperature at the next time node, 2=j . This process continues till we reach the 
time at which we are interested in finding the temperature. 
 
Example 1 

A rod of steel is subjected to a temperature of C°100  on the left end and C°25  on the right 
end. If the rod is of length m05.0 , use the explicit method to find the temperature distribution 
in the rod from 0=t and 9=t seconds. Use mx 01.0=∆ , st 3=∆ . Given: 

Km
Wk
−

= 54 , 37800
m
kg

=ρ , 
Kkg

JC
−

= 490 .  

The initial temperature of the rod is C°20 . 
Solution  

C
k
ρ

α =  

   
4907800

54
×

=  

  sm /104129.1 25−×=  
Then 

( )2x
t

∆
∆

= αλ  
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( )2

5

01.0
3104129.1 −×=  

   4239.0=  

Number of time steps=
t
tt initialfinal

∆

−
 

             
3

09 −
=  

             3=  

 
Figure 3: Schematic diagram showing the node distribution in the rod 

 
The boundary conditions 

3,2,1,0allfor
25

100

5

0 =






°=

°=
j

CT
CT

j

j

                                                                            (E1.1)                                                                                                                                                                                                         

The initial temperature of the rod is C°20 , that is, all the temperatures of the nodes inside the 
rod are at C°20  when time, sec0=t  except for the boundary nodes as given by Equation 
(E1.1). This could be represented as 

1,2,3,4 allfor ,200 =°= iCTi .                                                                               (E1.2) 
Initial temperature at the nodes inside the rod (when t=0 sec) 
 

(E1.1)Equationfrom1000
0 CT °=   

(E1.2)Equationfrom

20
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°=
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°=

°=
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(E1.1)Equationfrom250
5 CT °=  

 
Temperature at the nodes inside the rod when t=3 sec 
 Setting 0=j  and 5,4,3,2,1,0=i  in Equation (7) gives the temperature of the nodes inside 
the rod when time, sec3=t . 

0=i 1 2 3 4 5

m01.0

CT °= 25CT °=100
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(E1.1)ConditionBoundary1001
0 CT °=  
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(E1.1)ConditionBoundary251

5 CT °=  
 
Temperature at the nodes inside the rod when t=6 sec 
 Setting 1=j  and 5,4,3,2,1,0=i  in Equation (7) gives the temperature of the nodes inside 
the rod when time, sec6=t  

(E1.1)ConditionBoundary1002
0 CT °=  
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Temperature at the nodes inside the rod when t=9 sec 
 Setting 2=j  and 5,4,3,2,1,0=i  in Equation (7) gives the temperature of the nodes inside 
the rod when time, sec9=t  
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To better visualize the temperature variation at different locations at different times, 
temperature distribution along the length of the rod at different times is plotted in the Figure 
4. 

 
Figure 4: Temperature distribution from explicit method 
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Implicit Method for Solving Parabolic PDEs 
In the explicit method, one is able to find the solution at each node, one equation at a time. 
However, the solution at a particular node is dependent only on temperature from 
neighboring nodes from the previous time step. For example, in the solution of Example 1, 
the temperatures at node 2 and 3 artificially stay at the initial temperature at 3=t  seconds. 
This is contrary to what we would expect physically from the problem.  

Also the explicit method does not guarantee stability which depends on the value of 
the time step, location step and the parameters of the elliptic equation. For the PDE 

t
T

x
T

∂
∂

=
∂
∂

2

2

α , 

the explicit method is convergent and stable for 

2
1

)( 2 ≤∆
∆
x

tα                                                                                                                 (8) 

These issues are addressed by using the implicit method. Instead of the temperature being 
found one node at a time, the implicit method results in simultaneous linear equations for the 
temperature at all interior nodes for a particular time. 
 The implicit method to solve the parabolic PDE given by equation (2) is as follows.  
The second derivative on the left hand side of the equation is approximated by the central 
divided difference scheme at time level 1+j  at node i  as 

( )2

1
1

11
1

1,
2

2 2
x

TTT
x
T j

i
j

i
j

i

ji ∆
+−

≈
∂
∂ +

−
++

+

+

                                                                                     (9) 

The first derivative on the right hand side of the equation is approximated by backward 
divided difference approximation at time level 1+j  and node i as 

t
TT

t
T j

i
j

i

ji ∆
−

≈
∂
∂ +

+

1

1,

                                                                                                   (10) 

Substituting Equations (9) and (10) in Equation (2) gives 

( ) t
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TTT j

i
j

i
j

i
j

i
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∆
−

=
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+− ++
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α  
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j
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i
j

i
j

i TTTT =−++− +
+

++
−

1
1

11
1 )21( λλλ                                                                          (11) 

where 

( )2x
t

∆
∆

= αλ  

Now Equation (11) can be written for all nodes (except the external nodes), at a particular 
time level. This results in simultaneous linear equations which can be solved to find the nodal 
temperature at a particular time. 
 
Example 2 

A rod of steel is subjected to a temperature of C°100  on the left end and C°25  on the right 
end. If the rod is of length m05.0 , use the implicit method to find the temperature distribution 
in the rod from 0=t to 9=t seconds. Use mx 01.0=∆ and st 3=∆ .  
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Given  

Km
Wk
−

= 54 , 37800
m
kg

=ρ , 
Kkg

JC
−

= 490 .  

The initial temperature of the rod is C°20 . 
Solution  

C
k
ρ

α =  

   
4907800

54
×

=  

   sm /104129.1 25−×=  
Then 

( )2x
t

∆
∆

= αλ  

    
( )2

5

01.0
310412.1 −×=  

    4239.0=  

 
Figure 5: Schematic diagram showing the node representation in the model 

 
The boundary conditions 

3,2,1,0for
25
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5

0 =
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°=
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j

                                                                                (E2.1)                                                                                                                                                                                                         

The initial temperature of the rod is C°20 , that is, the temperatures of all the nodes inside the 
rod are at C°20  when time, 0=t  except for the boundary nodes where the temperatures are 
given by satisfying the Equation (E2.1). This could be represented as 

4321for  ,200 ,,,iCTi =°= .                                                                                   (E2.2) 
 
Initial temperature at the nodes inside the rod (when t=0 sec) 
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Temperature at the nodes inside the rod when t=3 sec 
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For all the interior nodes, putting 0=j  and 4,3,2,1=i  in Equation (11) gives the following 
equations 
 
i=1 

204239.08478.139.42

20)4239.0()4239.021()1004239.0(
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i=2 
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1
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1 )21( TTTT =−++− λλλ  
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204239.08478.14239.0 1
4

1
3

1
2 =−+− TTT                                                                 (E2.5) 

i=4 
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598.308478.14239.0 1
4

1
3 =+− TT                                                                             (E2.6) 

The simultaneous linear equations (E2.3) – (E2.6) can be written in matrix form as 
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−
−−

−−
−

598.30
20
20
390.62

8478.14239.000
4239.08478.14239.00
04239.08478.14239.0
004239.08478.1

1
4

1
3

1
2

1
1

T
T
T
T

 

The above coefficient matrix is tri-diagonal. Special algorithms such as Thomas’ algorithm 
can be used to solve simultaneous linear equation with tri-diagonal coefficient matrices. The 
solution is given by 
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Hence, the temperature at all the nodes at time, sec 3=t is 
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Temperature at the nodes inside the rod when t=6 sec 
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For all the interior nodes, putting 1=j  and 4,3,2,1=i  in Equation (11) gives the following 
equations 
 
i=1 

451.394239.08478.139.42

451.394239.0)4239.021()1004239.0(
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The simultaneous linear equations (E2.7) – (E2.10) can be written in matrix form as 
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The solution of the above set of simultaneous linear equation is  
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Hence, the temperature at all the nodes at time, sec 6=t is 
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Temperature at the nodes inside the rod when t=9 sec 
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For all the interior nodes, setting 2=j  and 4,3,2,1=i  in Equation (11) gives the following 
equations 
i=1 

326.514239.08478.139.42
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i=4 
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The simultaneous linear equations (E2.11) – (E2.14) can be written in matrix form as 
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The solution of the above set of simultaneous linear equation is  
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Hence, the temperature at all the nodes at time, sec 9=t is 
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To better visualize the temperature variation at different locations at different times, the 
temperature distribution along the length of the rod at different times is plotted in Figure 6. 
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Figure 6: Temperature distribution in rod from implicit method 
 
Crank-Nicolson Method 
The Crank-Nicolson method provides an alternative scheme to implicit method. The 
accuracy of Crank-Nicolson method is same in both space and time. In the implicit method, 

the approximation of  2

2

x
T

∂
∂  is of 2)( xO ∆  accuracy, while the approximation for 

t
T
∂
∂  is of 

)( t∆ accuracy.  The accuracy in the Crank-Nicolson method is achieved by approximating the 
derivative at the mid point of time step. To numerically solve PDEs such as Equation (2), one 
can use finite difference approximations of the partial derivatives. The left hand side of the 
second derivative is approximated at node i  as the average value of the central divided 
difference approximation at time level 1+j  and time level j . 
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The first derivative on the right side of Equation (2) is approximated using forward divided 
difference approximation at time level 1+j  and node i  as 
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Substituting Equations (12) and (13) in Equation (2) gives 
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where 

( )2x
t

∆
∆

= αλ  

Now Equation (15) is written for all nodes (except the external nodes). This will result in 
simultaneous linear equations that can be solved to find the temperature at a particular time. 
 
Example 3 

A rod of steel is subjected to a temperature of C°100  on the left end and C°25  on the right 
end. If the rod is of length m05.0 , use Crank-Nicolson method to find the temperature 
distribution in the rod from 0=t to 9=t seconds. Use mx 01.0=∆ , st 3=∆ .  
Given  

Km
Wk
−

= 54 , 37800
m
kg

=ρ , 
Kkg

JC
−

= 490 .  

The initial temperature of the rod is C°20 . 
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Solution  

C
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Figure 7: Schematic diagram showing the node representation in the model 

 
The boundary conditions are 
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The initial temperature of the rod is C°20 , that is, all the temperatures of the nodes inside the 
rod are at C°20  at, 0=t  except for the boundary nodes given by Equation (E3.1). This could 
be represented as 

1,2,3,4for  ,200 =°= iCTi .                                                                               (E3.2) 
 
Initial temperature at the nodes inside the rod (when t=0 sec) 
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Temperature at the nodes inside the rod when t=3 sec 

(E3.1)ConditionBoundary
25

100
1

5

1
0







°=

°=

CT
CT

 

For all the interior nodes, setting 0=j  and 4,3,2,1=i  in Equation (15) gives the following 
equations 
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The coefficient matrix in the above set of equations is tridiagonal. Special algorithms such as 
Thomas’ algorithm are used to solve equation with tridiagonal coefficient matrices 
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The above matrix is tridiagonal. Solving the above matrix we get 
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Hence, the temperature at all the nodes at time, sec3 t = is 
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Temperature at the nodes inside the rod when t=6 sec 
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For all the interior nodes, putting 1=j  and 4,3,2,1=i  in Equation (15) gives the following 
equations 
i=1 
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i=4 
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The simultaneous linear equations (E3.7) – (E3.10) can be written in matrix form as 
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Solving the above set of equations, we get 
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Hence, the temperature at all the nodes at time, sec6 t = is 
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Temperature at the nodes inside the rod when t=9 sec 
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For all the interior nodes, setting 2=j  and 4,3,2,1=i  in Equation (15) gives the following 
equations 
i=1 
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i=2 
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The simultaneous linear equations (E3.11) – (E3.14) can be written in matrix form as 



















=







































−
−−

−−
−

210.57
509.49
318.69
34.162

8478.24239.000
4239.08478.24239.00
04239.08478.24239.0
004239.08478.2

3
4

3
3

3
2

3
1

T
T
T
T

 

Solving the above set of equations, we get 
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Hence, the temperature at all the nodes at time, sec 9=t is 
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To better visualize the temperature variation at different locations at different times, the 
temperature distribution along the length of the rod at different times is plotted in Figure 8. 
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Figure 8: Temperature distribution in rod from Crank-Nicolson method 
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Analytical Method 
Appendix A 
The parabolic heat conduction equation given by Equation (2) is formulated as 

0,05.002

2

><<
∂
∂

=
∂
∂ tx

t
T

x
Tα  

with boundary conditions 
CT °= 100 at 0,0 >= tx                                                                                         (16) 

CT °= 25 at 0,05.0 >= tx                                                                                      (17) 
and initial conditions 

CT °= 20 at 05.00,0 <<= xt                                                                               (18) 
We split the problem into a steady state problem and a transient (homogeneous) problem. 
The solutions of the steady state problem and transient problem are found separately and by 
applying the principle of superposition, the final solution would be obtained. This 
formulation can be represented as 

),()(),( txTxTtxT hs +=                                                                                             (19) 
where 

sT = solution for steady state problem, 

hT = solution for transient problem. 
Steady State Solution 

Since the temperature at steady state is not changing, 0=
∂
∂

t
T , the steady state problem is 

formulated as  

05.00,02

2

<<= x
dx

Td s                                                                                   (20) 

with boundary conditions 
CTs °= 100  at 0=x                                                                                                   (21) 

CTs °= 25  at 05.0=x                                                                                               (22) 
The solution to Equation (20) is given by integrating it on both sides to give 

 A
dx
dTs =  

where A is a constant of integration and by integrating again to give 
BAxTs +=                                                                                                                (23) 

where B is another constant of integration. By  substituting the boundary condition (21), we 
obtain 

100
100)0(

=
=+

B
BA  

By substituting the boundary condition (22), we obtain 
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A

 

Plugging back the values of A  and B  in Equation (23), we get the steady state solution as 
1001500 +−= xTs                                                                                                     (24) 

Transient Solution 
The transient problem is formulated as 

05.00,2

2

<<
∂
∂

=
∂
∂

x
t

T
x
T hhα                                                                           (25) 

with boundary conditions 
CTh °= 0  at 0=x                                                                                                      (26) 
CTh °= 0  at 05.0=x                                                                                                 (27) 

Note: from Equation (19),  
),()(),( txTxTtxT hs +=  

and by substituting Equations (21) and (22), the boundary conditions of hT  are obtained. 
Initial conditions for the transient problem are hence given by 

05.00,0,20 <<=−= xtTT sh        
)1001500(20 +−−= x  

100150020 −+= x   
05.00,0,801500 <<=−= xtx                                                                          (28) 

To obtain solution for the transient problem, let us assume ),( txTh  is function of the product 
of a spatial function and a temperature function. That is 

)().(),( txXtxTh τ=                                                                                                    (29) 
Substituting Equation (29) in Equation (25), we get 

dt
dX

dx
Xd τατ =2

2
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d
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X
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ατ
11

2

2

=                                                                                                       (30) 

The left hand side of Equation (30) represents the spatial term and the right hand side 
represents the temporal (time) term. We will attempt to find the solutions of the spatial and 
temporal term independently. To do so, let us assume that both the left hand side and the 
right hand side of the Equation (30) is equal to a constant 2β−  (say) 

2
2

2 11 βτ
ατ

−==
dt
d

dx
Xd

X
                                                                                            (31) 

 
Spatial solution 
Taking just the spatial term from Equation (31), we have 

2
2

21 β−=
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X
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02
2

2

=+ X
dx

Xd β                                                                                                        (32) 

The Equation (32) is a homogeneous second order ordinary differential equation. These type 
of equations have the solution of the form mxexX =)( . Substituting mxexX =)(  in Equation 
(32) we get, 

0)(
0

22

22
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=+

β

β

me
eem

mx

mxmx

  

        022 =+ βm  
ββ iimm −= ,, 21  

From the values of 1m  and 2m , the solution of )(xX  is written of the form 
)sin()cos()( xDxCxX ββ +=                                                                                    (33) 

 
Temporal solution 
Taking just the temporal term from Equation (31), we have 

21 βτ
ατ

−=
dt
d                     

02 =+ατβτ
dt
d                                                                                                            (34) 

The above equation is a homogeneous first order ordinary differential equation. These type of 
equations have the solution of the form mtet =)(τ . Substituting mtet =)(τ  in Equation (34) 
we get 
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             2αβ−=m  

From the value of m , the solution of )(tτ  is written as 
tEet

2

)( αβτ −=                                                                                                              (35) 
Substituting Equations (33) and (35) in Equation (29), we have 

[ ])sin()cos(),(
2
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2

xGxFetxT t
h ββαβ += −                                                                       (36) 

Substituting boundary condition represented by Equation (26) in Equation (36) gives 
[ ] 0)0.sin()0.cos(
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Since, te
2αβ−  cannot be zero, 0=F . Now substituting 0=F  in Equation (36) gives 

)sin(),(
2

xGetxT t
h βαβ−=                                                                                        (37) 

Substituting boundary condition represented by Equation (27) in Equation (37) gives 
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πβ n
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Substituting the value of β  in Equation (37) gives 

)20sin(),(
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As the general solution can have any value of n , 
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Substituting the initial condition  
CxxTh °−= )801500()0,(   

from Equation (28) in Equation (38) 
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Multiplying both sides by )20sin( xmπ  and integrating from 0 to 05.0  gives 
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Substituting the following in the above equation, 
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we get 
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Substituting Equation (39) in Equation (38), we get 
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Substituting Equations (40) and (24) in Equation (19) we have 
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   sm /104129.1 25−×=  
 
and substituting the value of α  in Equation (40) gives 

[ ]∑
∞

=

×− −







 −−

++−=
1

20104129.1 )20sin(160)1(101001500),(
25

m

tm
m

xme
m

xtxT π
π

π               (42) 

Equation (42) is the analytical solution of the problem. Substituting the values of x  and t  
gives the temperature inside the rod at a particular location and time. For example using the 
analytical solution, we will find the temperature of the rod at the first node, that is, 

mx 01.0=  when 9=t secs. 

C

me
m

T m

m

m

°=






 −−

++−= ××−
∞

=

−

∑
510.62

)2.0sin(160)1(10100)01.0(1500)9,01.0( 9]20[104129.1

1

25

π
π

π

 

Similarly using Equation (42), the temperature of the rod at any location at any time can be 
found by substituting the corresponding values of x  and t . 
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Comparison of the three numerical methods 
To compare all three numerical methods with the analytical solution, the temperature values 
obtained at all the interior nodes at time, 9=t  sec are presented in the Table 1. From Table 
1, it is clear that among the numerical methods used to solve partial differential equations, 
Crank-Nicolson method provides better accuracy compared to the other two numerical 
methods ( Explicit Method and Implicit Method) explained in this chapter. 
 
Table 1: Comparison of temperature obtained at interior nodes using different methods 
discussed in this chapter (absolute true error is given in parenthesis) 

Temperature  
at Nodes 

Explicit  
Method 

( C° ) 

Implicit  
Method 
 ( C° ) 

Crank-Nicolson  
Method 

( C° ) 

Analytical  
Solution 

( C° ) 
3

1T  65.953(3.443) 59.043(3.467) 62.604(0.094) 62.510 
3

2T  39.132(2.048) 36.292(0.792) 37.613(0.529) 37.084 
3

3T  27.266(1.422) 26.809(0.965) 26.562(0.282) 25.844 
3

4T  22.872(0.738) 24.243(0.633) 24.042(0.432) 23.610 
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Chapter 10.03 
Elliptic Partial Differential Equations 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. use numerical methods to solve elliptic partial differential equations by direct 
method, Gauss-Seidel method, and Gauss-Seidel method with over relaxation. 

 
The general second order linear PDE with two independent variables and one dependent 
variable is given by 

02

22

2

2

=+
∂
∂

+
∂∂

∂
+

∂
∂ D

y
uC

yx
uB

x
uA                                                                                 (1) 

where CBA ,, are functions of the independent variables x  and y , and D  can be a function 

of 
x
uuyx
∂
∂,,,  and 

y
u
∂
∂ . Equation (1) is considered to be elliptic if 

042 <− ACB                                                                                                              (2) 
One popular example of an elliptic second order linear partial differential equation is the 
Laplace equation which is of the form 

02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u                                                                                                              (3) 

As 
1=A , 0=B , 1=C , 0=D  

then 

04
)1)(1(4042

<−=
−=− ACB

 

Hence equation (3) is elliptic. 
 
The Direct Method of Solving Elliptic PDEs  
Let’s find the solution via a specific physical example. Take a rectangular plate as shown in 
Fig. 1 where each side of the plate is maintained at a specific temperature. We are interested 
in finding the temperature within the plate at steady state. No heat sinks or sources exist in 
the problem. 
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 Figure 1: Schematic diagram of the plate with the temperature boundary conditions 
The partial differential equation that governs the temperature ),( yxT  is given by 

02

2

2

2

=
∂
∂

+
∂
∂

y
T

x
T                                                                                                            (4) 

To find the temperature within the plate, we divide the plate area by a grid as shown in 
Figure 2. 

  
       Figure 2: Plate area divided into a grid 
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The length L  along the −x axis is divided into m  equal segments, while the width W  along 
the −y axis is divided into n  equal segments, hence giving 

m
Lx =∆                                                                                                                        (5) 

n
Wy =∆                                                                                                                        (6) 

Now we will apply the finite difference approximation of the partial derivatives at a general 
interior node ( ji, ). 

( )2
,1,,1

,
2

2 2
x

TTT
x
T jijiji

ji ∆

+−
≅

∂
∂ −+                                                                                       (7) 

( )2
1,,1,

,
2

2 2
y

TTT
y
T jijiji

ji ∆

+−
≅

∂
∂ −+                                                                                       (8) 

Equations (7) and (8) are central divided difference approximations of the second derivatives. 
Substituting Equations (7) and (8) in Equation (4), we get 

( ) ( )
0

22
2

1,,1,
2

,1,,1 =
∆

+−
+

∆

+− −+−+

y
TTT

x
TTT jijijijijiji                                                              (9) 

For a grid with 
yx ∆=∆  

Equation (9) can be simplified as 
04 ,1,1,,1,1 =−+++ −+−+ jijijijiji TTTTT                                                                        (10) 

Now we can write this equation at all the interior nodes of the plate, that is )1()1( −×− nm  
nodes. This will result in an equal number of equations and unknowns.  The unknowns are 
the temperatures at the interior )1()1( −×− nm  nodes. Solving these equations will give us 
the two-dimensional profile of the temperature inside the plate. 
 
Example 1 

A plate mm 0.34.2 ×  is subjected to temperatures as shown in Figure 3. Use a square grid 
length of m6.0 . Using the direct method, find the temperature at the interior nodes.  
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             Figure 3: Plate with dimension and boundary temperatures 
 
Solution  

myx 6.0=∆=∆  
Re-writing Equations (5) and (6) we have 

x
Lm
∆

=  

6.0
4.2

=  

4=  

5
6.0

3

=

=

∆
=

y
Wn

 

The nodes are shown in Figure 4. 
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                           Figure 4: Plate with nodes 
 
All the nodes on the left and right boundary have an i  value of zero and m , respectively.  
While all the nodes on the top and bottom boundary have a j  value of zero and n , 
respectively.  
From the boundary conditions 
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3,2,1,300
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iT
iT

jT
jT

i

i

j

j

                                                                                    (E1.1) 

The corner nodal temperature of 0,45,45,0 ,, TTT and 0,0T are not needed. Now to get the 
temperature at the interior nodes we have to write Equation (10) for all the combinations of i  
and j , 1,....,1;1,....,1 −=−= njmi . 
i=1 and j=1 

04 1,10,12,11,01,2 =−+++ TTTTT  
045075 1,12,11,2 =−+++ TTT  

1254 1,22,11,1 −=++− TTT                                                                                       (E1.2)                                                             

i=1 and j=2 
04 2,11,13,12,02,2 =−+++ TTTTT  

0475 2,11,13,12,2 =−+++ TTTT  
754 2,23,12,11,1 −=++− TTTT                                                                                  (E1.3)   

i=1 and j=3 
04 3,12,14,13,03,2 =−+++ TTTTT  

0475 3,12,14,13,2 =−+++ TTTT  

x

y

0,0T
0,1T 0,2T 0,3T 0,4T

1,0T

2,0T

3,0T

4,0T

5,0T

1,1T 1,2T 1,3T 1,4T

2,1T 2,2T 2,3T 2,4T

3,1T 3,2T 3,3T 3,4T

4,1T 4,2T
4,3T 4,4T

5,1T 5,2T 5,3T 5,4T
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754 3,24,13,12,1 −=++− TTTT                                                                                  (E1.4)   

i=1 and j=4 
04 4,13,15,14,04,2 =−+++ TTTTT  
0430075 4,13,14,2 =−+++ TTT  

3754 4,24,13,1 −=+− TTT                                                                                         (E1.5) 

i=2 and j=1 
04 1,20,22,21,11,3 =−+++ TTTTT  

0450 1,22,21,11,3 =−+++ TTTT  
504 1,32,21,21,1 −=++− TTTT                                                                                   (E1.6)                                                             

i=2 and j=2 
04 2,21,23,22,12,3 =−+++ TTTTT  
04 2,33,22,21,22,1 =++−+ TTTTT                                                                             (E1.7)   

i=2 and j=3 
04 3,22,24,23,13,3 =−+++ TTTTT  
04 3,34,23,22,23,1 =++−+ TTTTT                                                                             (E1.8)   

i=2 and j=4 
04 4,23,25,24,14,3 =−+++ TTTTT  
04300 4,23,24,14,3 =−+++ TTTT  

3004 4,34,23,24,1 −=+−+ TTTT                                                                                 (E1.9)                                

i=3 and j=1 
04 1,30,32,31,21,4 =−+++ TTTTT  
0450100 1,32,31,2 =−+++ TTT  

1504 2,31,31,2 −=+− TTT                                                                                      (E1.10)                                                             

i=3 and j=2 
04 2,31,33,32,22,4 =−+++ TTTTT  

04100 2,31,33,32,2 =−+++ TTTT  
1004 3,32,31,32,2 −=+−+ TTTT                                                                               (E1.11)   

i=3 and j=3 
04 3,32,34,33,23,4 =−+++ TTTTT  

04100 3,32,34,33,2 =−+++ TTTT  
1004 4,33,32,33,2 −=+−+ TTTT                                                                               (E1.12)   

i=3 and j=4 
04 4,33,35,34,24,4 =−+++ TTTTT  
04300100 4,33,34,2 =−+++ TTT  
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4004 4,33,34,2 −=−+ TTT                                                    (E1.13)    
                                                                                                                                

Equations (E1.2) to (E1.13) represent a set of twelve simultaneous linear equations and 
solving them gives the temperature at the twelve interior nodes. The solution is 

C

T
T
T
T
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T
T
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T
T
T
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                          Figure 5: Temperatures at the interior nodes of the plate 
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Gauss-Seidel Method 
To take advantage of the sparseness of the coefficient matrix as seen in Example 1, the 
Gauss-Seidel method may provide a more efficient way of finding the solution. In this case, 
Equation (10) is written for all interior nodes as 

5,4,3,2,1;4,3,2,1,
4

1,1,,1,1
, ==

+++
= −+−+ ji

TTTT
T jijijiji

ji                                         (11) 

Now Equation (11) is solved iteratively for all interior nodes until all the temperatures at the 
interior nodes are within a pre-specified tolerance. 
 
Example 2 

A plate mm 0.34.2 ×  is subjected to the temperatures as shown in Fig. 6. Use a square grid 
length of m6.0 . Using the Gauss-Seidel method, find the temperature at the interior nodes. 
Conduct two iterations at all interior nodes. Find the maximum absolute relative error at the 
end of the second iteration. Assume the initial temperature at all interior nodes to be C°0 . 

                   
                         Figure 6: A rectangular plate with thedimensions and boundary temperatures 
 
Solution  

myx 6.0=∆=∆  
Re-writing Equations (5) and (6) we have 

x
Lm
∆

=  

6.0
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=  

4=  

y
Wn
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=  
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5
6.0

3

=

=
 

The interior nodes are shown in Figure 7. 

                     
                                               Figure 7: Plate with nodes 
 
All the nodes on the left and right boundary have an i  value of zero and m , respectively.  
All of the nodes on the top or bottom boundary have a j  value of either zero or n , 
respectively.  
From the boundary conditions 
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                                                                                    (E2.1) 

 
The corner nodal temperature of 0,45,45,0 ,, TTT and 0,0T are not needed. Now to get the 
temperature at the interior nodes we have to write Equation (11) for all of the combinations 
of i  and j , 1,...,1;1,....,1 −=−= njmi . 
Iteration 1 
For iteration 1, we start with all of the interior nodes having a temperature of C°0 .  
i=1 and j=1 

4
0,12,11,01,2

1,1

TTTT
T

+++
=  

4
500750 +++

=  

x

y

0,0T
0,1T 0,2T 0,3T 0,4T

1,0T

2,0T

3,0T

4,0T

5,0T

1,1T 1,2T 1,3T 1,4T

2,1T 2,2T 2,3T 2,4T

3,1T 3,2T 3,3T 3,4T

4,1T 4,2T
4,3T 4,4T

5,1T 5,2T 5,3T 5,4T
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C°= 2500.31  
i=1 and j=2 

4
1,13,12,02,2

2,1

TTTT
T

+++
=  

4
2500.310750 +++

=  

C°= 5625.26  
i=1 and j=3 

4
2,14,13,03,2

3,1

TTTT
T

+++
=  

4
5625.260750 +++

=  

C°= 3906.25  
i=1 and j=4 

4
3,15,14,04,2

4,1

TTTT
T

+++
=  

4
3906.25300750 +++

=  

C°= 098.100  
i=2 and j=1 

4
0,22,21,11,3

1,2

TTTT
T

+++
=  

4
5002500.310 +++

=  

C°= 3125.20  
i=2 and j=2 

4
1,23,22,12,3

2,2

TTTT
T

+++
=  

4
3125.2005625.260 +++

=  

 C°= 7188.11  
i=2 and j=3 

4
2,24,23,13,3

3,2

TTTT
T

+++
=  

4
7188.1103906.250 +++

=  

C°= 27735.9  
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i=2 and j=4 

4
3,25,24,14,3

4,2

TTTT
T

+++
=  

4
27735.9300098.1000 +++

=  

C°= 344.102  
i=3 and j=1 

4
0,32,31,21,4

1,3

TTTT
T

+++
=  

4
5003125.20100 +++

=  

C°= 5781.42  
i=3 and j=2 

4
1,33,32,22,4

2,3

TTTT
T

+++
=  

4
5781.4207188.11100 +++

=  

C°= 5742.38  
i=3 and j=3 

4
2,34,33,23,4

3,3

TTTT
T

+++
=  

4
5742.38027735.9100 +++

=  

C°= 9629.36  
i=3 and j=4 

4
3,35,34,24,4

4,3

TTTT
T

+++
=  

4
9629.36300344.102100 +++

=  

C°= 827.134  
Iteration 2 
For iteration 2, we use the temperatures from iteration 1.  
i=1 and j=1 

4
0,12,11,01,2

1,1

TTTT
T

+++
=  

4
505625.26753125.20 +++

=  

C°= 9688.42  
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%27.27

100
9688.42

2500.319688.42

100
1,1

1,11,1
1,1

=

×
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=

×
−

= present
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a T
TT

ε

 

 
i=1 and j=2 

4
1,13,12,02,2

2,1

TTTT
T

+++
=  

4
9688.423906.25757188.11 +++

=  

C°= 7696.38  

%49.31

100
7696.38

5625.267696.38

100
2,1

2,12,1
2,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=1 and j=3 

4
2,14,13,03,2

3,1

TTTT
T

+++
=  

4
7696.38098.1007527735.9 +++

=  

C°= 7862.55  

%49.54

100
7862.55

3906.257862.55

100
3,1

3,13,1
3,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=1 and j=4 

4
3,15,14,04,2

4,1

TTTT
T

+++
=  

4
7862.5530075344.102 +++

=  

C°= 283.133  
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%90.24

100
283.133

098.100283.133

100
4,1

4,14,1
4,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=2 and j=1 

4
0,22,21,11,3

1,2

TTTT
T

+++
=  

4
507188.119688.425781.42 +++

=  

C°= 8164.36  

%83.44

100
8164.36

3125.208164.36

100
1,2

1,21,2
1,2

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=2 and j=2 

4
1,23,22,12,3

2,2

TTTT
T

+++
=  

4
8164.3627735.97696.385742.38 +++

=  

C°= 8594.30  

%03.62

100
8594.30

7188.118594.30

100
2,2

2,22,2
2,2

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=2 and j=3 

4
2,24,23,13,3

3,2

TTTT
T

+++
=  

4
8594.30344.1027862.559629.36 +++

=  

C°= 4881.56  
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%58.83

100
4881.56

27735.94881.56

100
3,2
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=

×
−
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×
−

= present

previouspresent

a T
TT

ε

 

i=2 and j=4 

4
3,25,24,14,3

4,2

TTTT
T

+++
=  

4
4881.56300283.133827.134 +++

=  

C°= 150.156  

%46.34

100
150.156

344.102150.156

100
4,2

4,24,2
4,2

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=1 

4
0,32,31,21,4

1,3

TTTT
T

+++
=  

4
505742.388164.36100 +++

=  

C°= 3477.56  

%44.24

100
3477.56

5781.423477.56

100
1,3

1,31,3
1,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=2 

4
1,33,32,22,4

2,3

TTTT
T

+++
=  

4
3477.569629.368594.30100 +++

=  

C°= 0425.56  
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100
0425.56

5742.380425.56

100
2,3

2,32,3
2,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=3 

4
2,34,33,23,4

3,3

TTTT
T

+++
=  

4
0425.56827.1344881.56100 +++

=  

C°= 8394.86  

%44.57

100
8394.86

9629.368394.86

100
3,3

3,33,3
3,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=4 

4
3,35,34,24,4

4,3

TTTT
T

+++
=  

4
8394.86300150.156100 +++

=  

C°= 747.160  

%12.16

100
747.160

827.134747.160

100
4,3

4,34,3
4,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

The maximum absolute relative error at the end of iteration 2 is 83% . 
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                  Figure 8: Temperature distribution after two iterations 
 
 
 
 
 
 
It took ten iterations to get all of the temperature values within 1% error. The table below 
lists the temperature values at the interior nodes at the end of each iteration: 
 
Node                       Number of Iterations 

 1 2 3 4 5 
1,1T  31.2500 42.9688 50.1465 56.1966 61.6376 

2,1T  26.5625 38.7695 52.9480 65.9264 76.5753 

3,1T  25.3906 55.7861 79.4296 96.8614 106.8163 

4,1T  100.0977 133.2825 152.6447 162.1695 167.1287 

1,2T  20.3125 36.8164 46.8384 55.6240 63.6980 

2,2T  11.7188 30.8594 53.0792 72.8024 85.3707 

3,2T  9.2773 56.4880 93.8744 113.5205 124.2410 

4,2T  102.3438 156.1493 176.8166 186.6986 191.8910 

1,3T  42.5781 56.3477 63.2202 70.3522 75.3468 

2,3T  38.5742 56.0425 75.7847 87.6890 94.6990 

3,3T  36.9629 86.8393 107.6015 118.0785 123.7836 

4,3T  134.8267 160.7471 171.1045 176.1943 178.9186 
 
 

x

y

300 300 300

75

75

75

75

133 156 161 100

56 56 87 100

39 31 56 100

43 37 56 100

50 50 50
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Node                       Number of Iterations 

 6 7 8 9 10 
1,1T  66.3183 69.4088 71.2832 72.3848 73.0239 

2,1T  83.3763 87.4348 89.8017 91.1701 91.9585 

3,1T  112.4365 115.6295 117.4532 118.4980 119.0976 

4,1T  169.8319 171.3450 172.2037 172.6943 172.9755 

1,2T  69.2590 72.6980 74.7374 75.9256 76.6127 

2,2T  92.8938 97.2939 99.8423 102.3119 102.1577 

3,2T  130.2512 133.6661 135.6184 136.7377 137.3802 

4,2T  194.7504 196.3616 197.2791 197.8043 198.1055 

1,3T  78.4895 80.3724 81.4754 82.1148 82.4837 

2,3T  98.7917 101.1642 102.5335 103.3221 103.7757 

3,3T  126.9904 128.8164 129.8616 130.4612 130.8056 

4,3T  180.4352 181.2945 181.7852 182.0664 182.2278 
 
Successive Over Relaxation Method 
The coefficient matrix for solving for temperatures given in Example 1 is diagonally 
dominant. Hence the Gauss-Siedel method is guaranteed to converge. To accelerate 
convergence to the solution, over relaxation is used. In this case 

old
ji

new
ji

relaxed
ji TTT ,,, )1( λλ −+=                                                                                        (12) 

where  
=new

jiT ,  value of temperature from current iteration, 

=old
jiT ,  value of temperature from previous iteration, 
=λ  weighting factor, 21 << λ . 

Again, these iterations are continued till the pre-specified tolerance is met for all nodal 
temperatures. This method is also called the Lieberman method. 
 
Example 3 

A plate mm 0.34.2 ×  is subjected to the temperatures as shown in Fig. 6. Use a square grid 
length of m6.0 . Use the Gauss-Seidel with successive over relaxation method with a 
weighting factor of 1.4 to find the temperature at the interior nodes. Conduct two iterations at 
all interior nodes. Find the maximum absolute relative error at the end of the second iteration. 
Assume the initial temperature at all interior nodes to be C°0 . 
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                    Figure 9: A rectangular plate with the dimensions and boundary temperatures 
 
Solution  

myx 6.0=∆=∆  
Re-writing Equations (5) and (6) we have 

4
6.0
4.2

=

=

∆
=

x
Lm

 

5
6.0

3

=

=

∆
=

y
Wn

 

The interior nodes are shown in the Figure 10. 

C°50

C°75

C°300

C°100

m4.2

m0.3

x

y
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                          Figure 10: Plate with nodes 
 
All of the nodes on the left and right boundary have an i  value of zero and m , respectively.  
All of the nodes on the top or bottom boundary have a j  value of either zero or n , 
respectively.  
From the boundary conditions 













==

==

==

==

3,2,1,300
3,2,1,50

4,3,2,1,100

4,3,2,1,75

5,

0,

,4

,0

iT
iT

jT
jT

i

i

j

j

                                                                                       (E3.1) 

The corner nodal temperature of 0,45,45,0 ,, TTT and 0,0T are not needed. Now to get the 
temperature at the interior nodes, we have to write Equation (11) for all of the combinations 
of i  and j , =i 1 to 1−m , =j 1 to 1−n . After getting the temperature from Equation (11), 
we have to use Equation (12) to apply the over relaxation method. 
Iteration 1 
For iteration 1, we start with all of the interior nodes having a temperature of C°0 .  
i=1 and j=1 

4
0,12,11,01,2

1,1

TTTT
T

+++
=  

4
500750 +++

=  

C°= 2500.31  

1,1 1,1 1,1(1 )relaxed new oldT T Tλ λ= + −  

x

y

0,0T
0,1T 0,2T 0,3T 0,4T

1,0T

2,0T

3,0T

4,0T

5,0T

1,1T 1,2T 1,3T 1,4T

2,1T 2,2T 2,3T 2,4T

3,1T 3,2T 3,3T 3,4T

4,1T 4,2T
4,3T 4,4T

5,1T 5,2T 5,3T 5,4T
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C°=
−+=

7500.43
0)4.11()2500.31(4.1

 

i=1 and j=2 

4
1,13,12,02,2

2,1

TTTT
T

+++
=  

4
75.430750 +++

=  

C°= 6875.29  

1,2 1,2 1,2(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

5625.41
0)4.11()6875.29(4.1

 

i=1 and j=3 

4
2,14,13,03,2

3,1

TTTT
T

+++
=  

4
5625.410750 +++

=  

C°= 1406.29  

1,3 1,3 1,3(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

7969.40
0)4.11()1406.29(4.1

 

i=1 and j=4 

4
3,15,14,04,2

4,1

TTTT
T

+++
=  

4
7969.40300750 +++

=  

C°= 949.103  

1,4 1,4 1,4(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

529.145
0)4.11()949.103(4.1

 

i=2 and j=1 

4
0,22,21,11,3

1,2

TTTT
T

+++
=  

C°=

+++
=

4375.23
4

50075.430
 

2,1 2,1 2,1(1 )relaxed new oldT T Tλ λ= + −  
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C°=
−+=

8215.32
0)4.11()4375.23(4.1

 

i=2 and j=2 

4
1,23,22,12,3

2,2

TTTT
T

+++
=  

C°=

+++
=

5938.18
4

8125.3205625.410
 

2,2 2,2 2,2(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

0313.26
0)4.11()5938.18(4.1

 

i=2 and j=3 

4
2,24,23,13,3

3,2

TTTT
T

+++
=  

C°=

+++
=

7071.16
4

0313.2607969.400
 

2,3 2,3 2,3(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

3899.23
0)4.11()7071.16(4.1

 

i=2 and j=4 

4
3,25,24,14,3

4,2

TTTT
T

+++
=  

C°=

+++
=

230.117
4

3899.23300529.1450
 

2,4 2,4 2,4(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

122.164
0)4.11()230.117(4.1

 

i=3 and j=1 

4
0,32,31,21,4

1,3

TTTT
T

+++
=  

C°=

+++
=

7031.45
4

5008125.32100
 

3,1 3,1 3,1(1 )relaxed new oldT T Tλ λ= + −  
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C°=
−+=

9844.63
0)4.11()7031.45(4.1

 

i=3 and j=2 

4
1,33,32,22,4

2,3

TTTT
T

+++
=  

C°=

+++
=

5039.47
4

9844.6300313.26100
 

3,2 3,2 3,2(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

5055.66
0)4.11()5039.47(4.1

 

i=3 and j=3 

4
2,34,33,23,4

3,3

TTTT
T

+++
=

 

C°=

+++
=

4739.47
4

5055.6603899.23100
 

3,3 3,3 3,3(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

4634.66
0)4.11()4739.47(4.1

 

i=3 and j=4 

4
3,35,34,24,4

4,3

TTTT
T

+++
=

 

C°=

+++
=

646.157
4

4634.66300122.164100
 

3,4 3,4 3,4(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

704.220
0)4.11()646.157(4.1

 

Iteration 2 
For iteration 2, we take the temperatures from iteration 1.  
i=1 and j=1 

4
0,12,11,01,2

1,1

TTTT
T

+++
=  

C°=

+++
=

8438.49
4

505625.41758125.32
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1,1 1,1 1,1(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

2813.52
75.43)4.11()8438.49(4.1

 

%32.16

100
2813.52

7500.432813.52

100
1,1

1,11,1
1,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=1 and j=2 

4
1,13,12,02,2

2,1

TTTT
T

+++
=  

C°=

+++
=

5274.48
4

2813.527969.40750313.26
 

1,2 1,2 1,2(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

3133.51
5625.41)4.11()5274.48(4.1

 

%00.19

100
3133.51

5625.413133.51

100
2,1

2,12,1
2,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=1 and j=3 

4
2,14,13,03,2

3,1

TTTT
T

+++
=  

C°=

+++
=

8103.73
4

3133.51529.145753899.23
 

 
1,3 1,3 1,3(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

0157.87
7969.40)4.11()8103.73(4.1
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%12.53

100
0157.87

7969.400157.87

100
3,1

3,13,1
3,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=1 and j=4 

4
3,15,14,04,2

4,1

TTTT
T

+++
=  

C°=

+++
=

534.156
4

0157.8730075122.164
 

1,4 1,4 1,4(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

936.160
529.145)4.11()534.156(4.1

 

%57.9

100
936.160

529.145936.160

100
4,1

4,14,1
4,1

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=2 and j=1 

4
0,22,21,11,3

1,2

TTTT
T

+++
=  

C°=

+++
=

0743.48
4

000.500313.262813.529844.63
 

2,1 2,1 2,1(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

1790.54
8125.32)4.11()0743.48(4.1

 

%44.39

100
1790.54

8125.321790.54

100
1,2

1,21,2
1,2

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε
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i=2 and j=2 

4
1,23,22,12,3

2,2

TTTT
T

+++
=  

C°=

+++
=

8469.48
4

1790.543899.233133.515055.66
 

2,2 2,2 2,2(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

9732.57
0313.26)4.11()8469.48(4.1

 

2,2 2,2
2,2

2,2

100

57.9732 26.0313 100
57.9732

55.10%

present previous

a present

T T
T

ε
−

= ×

−
= ×

=

 

i=2 and j=3 

4
2,24,23,13,3

3,2

TTTT
T

+++
=  

C°=

+++
=

8936.93
4

9732.57122.1640157.874634.66
 

2,3 2,3 2,3(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

095.122
3899.23)4.11()8936.93(4.1

 

%84.80

100
095.122

3899.23095.122

100
3,2

3,23,2
3,2

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=2 and j=4 

4
3,25,24,14,3

4,2

TTTT
T

+++
=  

C°=

+++
=

934.200
4

095.122300936.160704.220
 

2,4 2,4 2,4(1 )relaxed new oldT T Tλ λ= + −  
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C°=
−+=

659.215
122.164)4.11()934.200(4.1

 

%90.23

100
659.215

122.164659.215

100
4,2

4,24,2
4,2

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=1 

4
0,32,31,21,4

1,3

TTTT
T

+++
=  

C°=

+++
=

6711.67
4

505055.661790.54100
 

3,1 3,1 3,1(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

1458.69
9844.63)4.11()6711.67(4.1

 

%46.7

100
1458.69

9844.631458.69

100
1,3

1,31,3
1,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=2 

4
1,33,32,22,4

2,3

TTTT
T

+++
=  

C°=

+++
=

3956.73
4

1458.694634.669732.57100
 

3,2 3,2 3,2(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

1516.76
5055.66)4.11()3956.73(4.1

 

%67.12

100
1516.76

5055.661516.76

100
2,3

2,32,3
2,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε
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i=3 and j=3 

4
2,34,33,23,4

3,3

TTTT
T

+++
=  

C°=

+++
=

738.129
4

1516.76704.220095.122100
 

3,3 3,3 3,3(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

048.155
4634.66)4.11()738.129(4.1

 

%13.57

100
048.155

4634.66048.155

100
3,3

3,33,3
3,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

i=3 and j=4 

4
3,35,34,24,4

4,3

TTTT
T

+++
=  

C°=

+++
=

677.192
4

048.155300659.215100
 

3,4 3,4 3,4(1 )relaxed new oldT T Tλ λ= + −  

C°=
−+=

466.181
704.220)4.11()677.192(4.1

 

%62.21

100
466.181

704.220466.181

100
4,3

4,34,3
4,3

=

×
−

=

×
−

= present

previouspresent

a T
TT

ε

 

The maximum absolute relative error at the end of iteration 2 is %81 . 
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                    Figure 11: Temperature distribution after two iterations 
It took nine iterations to get all of the temperature values within 1% error. The table below 
lists the temperature values at all nodes after each iteration. 
 

Node                          Number of Iterations 

 1 2 3 4 5 
1,1T  43.7500 52.2813 59.7598 68.3636 75.6025 

2,1T  41.5625 51.3133 77.3856 93.5293 101.8402 

3,1T  40.7969 87.0125 117.5901 130.5043 119.8434 

4,1T  145.5289 160.9353 183.5128 173.8030 173.3888 

1,2T  32.8125 54.1789 61.2360 75.6074 86.4009 

2,2T  26.0313 57.9731 94.7142 116.7560 105.9062 

3,2T  23.3898 122.0937 155.2159 140.9145 139.0181 

4,2T  164.1216 215.6582 200.8045 199.1851 198.6561 

1,3T  63.9844 69.1458 72.9273 90.9098 83.7806 

2,3T  66.5055 76.1516 117.4804 106.8690 105.2995 

3,3T  66.4634 155.0472 131.9376 133.3050 131.1769 

4,3T  220.7047 181.4650 183.8737 182.8220 182.3127 
 
 
 
 
 
 

x

y

300 300 300

75

75

75

75

161 216 181 100

87 122 155 100

51 58 76 100

52 54 69 100

50 50 50
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Node                   Number of Iterations 

 6 7 8 9 
1,1T  79.3934 71.2937 74.2346 73.7832 

2,1T  92.3140 92.1224 93.0388 92.9758 

3,1T  119.9649 119.388 119.8366 119.9378 

4,1T  173.4118 173.0515 173.3665 173.3937 

1,2T  77.1177 76.4550 77.6097 77.5449 

2,2T  102.4498 102.4844 103.3554 103.3285 

3,2T  137.6794 137.7443 138.2932 138.3236 

4,2T  198.2290 198.2693 198.6060 198.5498 

1,3T  82.8338 82.4002 83.1150 82.9805 

2,3T  103.6414 104.0334 104.5308 104.3815 

3,3T  130.8010 131.0842 131.3876 131.2525 

4,3T  182.2354 182.3796 182.5459 182.4230 
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Alternative Boundary Conditions 
In Examples 1-3, the boundary conditions on the plate had a specified temperature on each 
edge. What if the conditions are different?  For example; what if one of the edges of the plate 
is insulated? In this case, the boundary condition would be the derivative of the temperature 
(called the Neuman boundary condition). If the right edge of the plate is insulated, then the 
temperatures on the right edge nodes also become unknowns. The finite difference Equation 
(10) in this case for the right edge for the nodes ),( jm , ;1,..3,2,1 −= nj  mi ,..,2,1=  

04 ,1,1,,1,1 =−+++ +−−+ jmjmjmjmjm TTTTT                                                                   (13) 
However, the node ),1( jm +  is not inside the plate. The derivative boundary condition needs 
to be used to account for these additional unknown nodal temperatures on the right edge. 
This is done by approximating the derivative at the edge node ),( jm  as  

)(2
,1,1

, x
TT

x
T jmjm

jm ∆

−
≅

∂
∂ −+                                                                                               (14) 

giving 

jm
jmjm x

TxTT
,

,1,1 )(2
∂
∂

∆+= −+                                                                                       (15) 

substituting Equation (15) in Equation (13), gives 

04)(22 ,1,1,
,

,1 =−++
∂
∂

∆+ +−− jmjmjm
jm

jm TTT
x
TxT                                                      (16) 

Now if the edge is insulated, 

0
,

=
∂
∂

jmx
T                                                                                                                  (17) 

substituting Equation (17) in Equation (16), gives an equation to use at the Neuman 
Boundary condition 

042 ,1,1,,1 =−++ +−− jmjmjmjm TTTT                                                                             (18) 
 
Example 4 

A plate mm 0.34.2 ×  is subjected to the temperatures and insulated boundary conditions as 
shown in Fig. 12. Use a square grid length of m6.0 . Assume the initial temperatures at all of 
the interior nodes to be C°0 .  Find the temperatures at the interior nodes using the direct 
method. 
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             Figure 12: Plate with the dimensions and boundary conditions 
 
Solution  

myx 6.0=∆=∆  
Re-writing Equations (5) and (6) we have 

4
6.0
4.2

=

=

∆
=

x
Lm

 

y
Wn
∆

=  

5
6.0

3

=

=
 

The unknown temperature nodes are shown in Figure 13. 

C°50

C°75

C°300

m4.2

m0.3

x

y

Insulated 
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                           Figure 13: Plate with the nodes labeled 
 
All of the nodes on the boundary have an i  value of either zero or m .  All of the nodes on 
the boundary have a j  value of either zero or n .  
From the boundary conditions 















==
∂
∂

==

==

==

4,3,2,1;0

4,3,2,1;300
4,3,2,1;50

4,3,2,1;75

,4

5,

0,

,0

j
x
T

iT
iT
jT

j

i

i

j

                                                                                          (E4.1) 

Now in order to find the temperatures at the interior nodes, we have to write Equation (10) 
for all of the combinations of i  and j . We express this using i  from 1 to 1−m  and j  from 
1 to 1−n . For the right side boundary nodes, where 4== mi , we have to write Equation 
(18) for 4,3,2,1=j . This would give 1−× nm  simultaneous linear equations with 1−× nm  
unknowns. 
i=1 and j=1 

04 1,10,12,11,01,2 =−+++ TTTTT  
045075 1,12,11,2 =−+++ TTT  

1254 1,22,11,1 −=++− TTT                                                                                       (E4.2)                                                             

i=1 and j=2 
04 2,11,13,12,02,2 =−+++ TTTTT  

0475 2,11,13,12,2 =−+++ TTTT  
754 2,23,12,11,1 −=++− TTTT                                                                                  (E4.3)   

x

y

0,5T 1,5T 2,5T 3,5T 4,5T

0,4T

0,3T

0,2T

0,1T

0,0T

1,4T
2,4T 3,4T 4,4T

1,3T 2,3T 3,3T 4,3T

1,2T 2,2T 3,2T 4,2T

1,1T 2,1T 3,1T 4,1T

1,0T 2,0T 3,0T 4,0T
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i=1 and j=3 

04 3,12,14,13,03,2 =−+++ TTTTT  
0475 3,12,14,13,2 =−+++ TTTT  

754 3,24,13,12,1 −=++− TTTT                                                                                  (E4.4)   

i=1 and j=4 
04 4,13,15,14,04,2 =−+++ TTTTT  
0430075 4,13,14,2 =−+++ TTT  

3754 4,24,13,1 −=+− TTT                                                                                         (E4.5) 

i=2 and j=1 
04 1,20,22,21,11,3 =−+++ TTTTT  

0450 1,22,21,11,3 =−+++ TTTT  
504 1,32,21,21,1 −=++− TTTT                                                                                (E4.6)                                                             

i=2 and j=2 
04 2,21,23,22,12,3 =−+++ TTTTT  
04 2,33,22,21,22,1 =++−+ TTTTT                                                                             (E4.7)   

i=2 and j=3 
04 3,22,24,23,13,3 =−+++ TTTTT  
04 3,34,23,22,23,1 =++−+ TTTTT                                                                             (E4.8)   

i=2 and j=4 
04 4,23,25,24,14,3 =−+++ TTTTT  
04300 4,23,24,14,3 =−+++ TTTT  

3004 4,34,23,24,1 −=+−+ TTTT                                                                                (E4.9)                                

i=3 and j=1 
04 1,30,32,31,21,4 =−+++ TTTTT  

4,1 2,1 3,2 3,150 4 0T T T T+ + + − =  

2,1 3,1 3,2 4,14 50T T T T− + + = −                                                                                  (E4.10)                                                             

i=3 and j=2 
04 2,31,33,32,22,4 =−+++ TTTTT  
04 2,43,32,31,32,2 =++−+ TTTTT                                                                            (E4.11)   

i=3 and j=3 
04 3,32,34,33,23,4 =−+++ TTTTT  
04 3,44,33,32,33,2 =++−+ TTTTT                                                                            (E4.12)   

i=3 and j=4 
04 4,33,35,34,24,4 =−+++ TTTTT  
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04300 4,33,34,24,4 =−+++ TTTT  
3004 4,44,33,34,2 −=+−+ TTTT                                                                              (E4.13)       

Now for 4=i  (for this problem 4=m ), all of these nodes are on the right hand side 
boundary which is insulated, so we use Equation (18)  for 4and3,2,1=j .Substituting i  for 
m  variables gives 
i=4 and j=1 

042 1,42,40,41,3 =−++ TTTT                                                                                   (E4.14) 
04502 1,42,41,3 =−++ TTT  

5042 2,41,41,3 −=+− TTT  
i=4 and j=2 

042 2,43,41,42,3 =−++ TTTT                                                                                   (E4.15) 
042 3,42,41,42,3 =+−+ TTTT  

i=4 and j=3 
042 3,44,42,43,3 =−++ TTTT                                                                                   (E4.16) 
042 4,43,42,43,3 =+−+ TTTT  

i=4 and j=4 
042 4,45,43,44,3 =−++ TTTT                                                                                   (E4.17) 
043002 4,43,44,3 =−++ TTT  

30042 4,43,44,3 −=−+ TTT            
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Equations (E4.2) to (E4.17) represent a set of sixteen simultaneous linear equations, and 
solving them gives the temperature at sixteen interior nodes. The solution is 
 
 

C

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

°
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738.232
830.178
617.130

7882.88
060.232
483.174
426.127

2678.87
021.218
614.159
335.117

8571.82
410.180
617.128

4444.99
8254.76

4,4

3,4

2,4

1,4

4,3

3,3

2,3

1,3

4,2

3,2

2,2

1,2

4,1

3,1

2,1

1,1
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APPENDIX A 
Analytical Solution of Example 1 
 
The differential equation for Example 1 is 

02

2

2

2

=
∂
∂

+
∂
∂

y
T

x
T . 

The temperature boundary conditions are given on the four sides of the plate (Dirichilet 
boundary conditions).  This problem is too complex to solve analytically. To make this 
simple, we split the problem into two problems and using the principle of superposition.  We 
then superimpose the solutions of the two simple problems to get the final solution. How the 
total problem is split is shown in Figure A.1. 

 
Figure A.1: Splitting of non-homogeneous problem into two homogeneous problems 
 

x

y

+
C°50

C°0

C°300

C°0

x

y

C°0

C°75 C°100

x

y
C°0

C°50

C°100

C°300

C°75

Non-Homogeneous Problem 

Homogeneous Problem #1 Homogeneous Problem #2 
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From Figure A.1, the total solution of the problem is obtained by the summation of the 
solutions of Problem 1 and Problem 2. 
Solution to Problem 1 

Let the solution to problem 1 be 1T .  
Then the differential equation is  

WyLx
y
T

x
T

<<<<=
∂
∂

+
∂
∂ 0;002

1
2

2
1

2

                                                               (A.1)    

with boundary conditions 
0),0(1 =yT                                                                                                               (A.2) 

0),4.2(1 =yT                                                                                                            (A.3) 
50)0,(1 =xT                                                                                                              (A.4) 

300)0.3,(1 =xT                                                                                                         (A.5)  
Let 1T  be a function of )(xX  and )(yY  

)().(),(1 yYxXyxT =                                                                                                (A.6) 
Substituting Equation (A.6) in Equation (A.1), we have 

0'''' =+ XYYX  

Y
Y

X
X ''''

−=  

2
''''

β−=−=
Y
Y

X
X                                                                                            (A.7) 

Spatial Y solution 
Now from Equation (A.7) we can write 

2
''

β=
Y
Y  

02'' =− YY β                                                                                                            (A.8) 
Equation (A.8) is a homogeneous second order differential equation. These type of equations 
have the solution of the form myeyY =)( . Substituting myeyY =)(  in Equation (A.8) we get, 

0)(
0

22

22

=−

=−

β

β

me
eem

my

mymy

  

         022 =− βm  
ββ −= ,, 21 mm  

From the values of 1m  and 2m , the solution of )(yY  is written as 
)sinh()cosh()( yByAyY ββ +=                                                                               (A.9) 

Spatial X solution 
Now from Equation (A.7) we can write 

2
''

β−=
X
X  

02'' =+ XX β                                                                                                        (A.10) 
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Equation (A.10) is a homogeneous second order differential equation. These types of 
equations have the solution of the form mxexX =)( . Substituting mxexX =)(  in Equation 
(A.10), we get 

 
 0)(

0
22

22

=+

=+

β

β

me
eem

mx

mxmx

  

          022 =+ βm  

 ββ iimm −= ,, 21  
From the values of 1m  and 2m , the solution of )(xX  is written as 

)sin()cos()( xDxCxX ββ +=                                                                                (A.11) 
Substituting Equation (A.9) and Equation (A.11) in Equation (A.6) gives 

[ ][ ])sinh()cosh()sin()cos(),(1 yByAxDxCyxT ββββ ++=                                 (A.12) 
To find the value of the constants we must use the boundary conditions. Applying boundary 
condition represented by Equation (A.2), we have 

[ ])sinh()cosh(0 yByAC ββ +=  
0=C  

Substituting 0=C  in Equation (A.12), we have 
[ ])sinh()cosh()sin(),(1 yByAxDyxT βββ +=  

[ ])sinh()cosh()sin( yByAx βββ +=                                                           (A.13) 
Applying the boundary condition represented by Equation (A.13), we have 

[ ])sinh()cosh()4.2sin(0 yByA βββ +=  
)4.2sin(0 β=  

πβ n=4.2  

4.2
πβ n

=                                                                                                                  (A.14) 

Substituting Equation (A.14) in Equation (A.13) 















+














= ynBynAxnyxT

4.2
sinh

4.2
cosh

4.2
sin),(1

πππ                                              

Since the general solution can have any value of n , 

∑
∞

=














+














=

1
1 4.2

sinh
4.2

cosh
4.2

sin),(
n

nn ynBynAxnyxT πππ                                 (A.15) 

Applying boundary condition represented by Equation (A.4), we have 

∑
∞

=






=

1 4.2
sin50

n
n xnA π                                                                                            (A.16) 

A half range sine series is given by 

∑
∞

=






=

1
sin)(

n
n x

L
nAxf π  

where 

dxx
L

nxf
L

A
L

n 





= ∫
πsin)(2

0
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Comparing Equation (A.16) with half range sine series, Equation (A.16) is a half-range 
expression of 50 in sine series with 4.2=L . Therefore 

∫ 





=

4.2

0 4.2
sin50

4.2
2 dxxnAn

π  

      

2.4

0

1 50 sin
1.2 2.4

n x dxπ =  
 ∫  

      

2.4

0

50 cos
2.41.2

2.4

n xn
π

π
  = −     

 

     
( )50 2.4 cos 1

1.2
n

n
π

π
×

= − +  ×
 

     
( )100 cos 1n

n
π

π
= − +    

     

100 1 ( 1)n

nπ
 = − −                                                                                                (A.17) 

Applying boundary condition represented by Equation (A.5) ,we have 

∑
∞

=














+














=

1
0.3

4.2
sinh0.3

4.2
cosh

4.2
sin300

n
nn

nBnAxn πππ                                    (A.18) 

Solving Equation (A.18) for nB  gives 
















−















= ∫ 4.2
3cos

4.2
sin300

4.2
2

4.2
3sin

1 4.2

0

ππ
π

nAdxxn
n

B nn     

     

2.4

0

cos
1 600 32.4 cos
3 2.4 2.4sin

2.42.4

n

n x
nAnn

π
π

ππ

   −       = −               

  

     

2.4

0

1 600 2.4 3cos cos
3 2.4 2.4 2.4sin
2.4

n
n x nA

n n
π π

π π

      = − −              
 

 

     

( )1 600 3cos 1 cos
3 2.4sin
2.4

n
nn A

n n
ππ

π π
  = − + −         

 

           

     

1 600 31 ( 1) cos
3 2.4sin
2.4

n
n

nA
n n

π
π π

   = − − −        
 

                                                (A.19) 

From Equations (A.15), (A.17) and (A.19), the solution 1T  is given as 
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∑
∞

=














+














=

1
1 4.2

sinh
4.2

cosh
4.2

sin),(
n

nn ynBynAxnyxT πππ                                 (A.20) 

where 

[ ]n
n n

A )1(1100
−−=

π
 and 

[ ]














−−−









=
4.2

3cos)1(1600

4.2
3sin

1 π
ππ

nA
nn

B n
n

n  

Solution Problem 2 

Let the solution to Problem 2 be 2T . Problem 2 can be solved similarly as Problem 1. The 
solution to Problem 2 is  

∑
∞

=














+














=

1
2 3

sinh
3

cosh
3

sin),(
n

nn xnDxnCynyxT πππ                                 (A.21) 

where 

[ ]n
n n

C )1(1150
−−=

π
      and 

[ ]














−−−









=
3
4.2cos)1(1200

3
4.2sin

1 π
ππ

nC
nn

D n
n

n  

Overall Solution 
The overall solution to the problem is 

),(),(),( 21 yxTyxTyxT +=  

1

1

( , ) sin cosh sinh
2.4 2.4 2.4

sin cosh sinh
3 3 3

n n
n

n n
n

n n nT x y x A y B y

n n ny C x D x

π π π

π π π

∞

=

∞

=

      = + +            
      +            

∑

∑
 

where 

[ ]n
n n

A )1(1100
−−=

π
, 

[ ]














−−−









=
4.2

3cos)1(1600

4.2
3sin

1 π
ππ

nA
nn

B n
n

n , 

[ ]n
n n

C )1(1150
−−=

π
   , 

[ ]














−−−









=
3
4.2cos)1(1200

3
4.2sin

1 π
ππ

nC
nn

D n
n

n . 
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Chapter 10.04 
Introduction to Finite Element Methods 
 
 
 
 
 
After reading this chapter, you should be able to: 
 

1. Understand the basics of finite element methods using a one-dimensional problem. 
 
In the last fifty years, the use of approximation solution methods to solve complex problems 
in engineering and science has grown significantly.  The widespread availability of powerful 
digital computers and commercial computational software based on these approximation 
methods with efficient solution algorithms has made them practical.  In this chapter, we are 
introducing the student to finite methods of solving differential equations.  We provide an 
elementary background on how finite element methods work, while using a single example to 
illustrate the approach, and discuss the accuracy and efficacy of the method. 
 
The single example chosen is a classical problem of a uniformly pressurized thick-walled 
cylinder with an axis-symmetric response (Figure 1).  This problem is chosen since it is 
simple enough to have an analytical solution, but complex enough such that its finite element 
method solution can be generalized for problems that are more complicated. We must  first 
define the problem, and then develop the exact solution so that we may compare it with the 
finite element methods result. 
 
Thick-Wall Cylinder Problem 

Problem Definition 
Consider a thick-walled cylinder as depicted in Figure 1, with the following material 
properties:  
 Young's modulus E , 
 Poisson's ratio v  
 inner radius a  
 outer radius, b  
 uniform internal pressure ip  
  external pressure, op  
 
 Find the following variables in the cylinder.  Plane stress state is assumed. 
  radial displacement, u  
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      radial stress, rσ  
     tangential stress, θσ   
 
Numerical Example Problem 
For demonstrating the use of approximate solution methods in solving the problem 
numerically, the following data is used:  
 25.0=a  m 
 5.0=b m 
 200=ip MPa 
 0=op  
 207=E GPa 
 3.0=v  
 

    

E,ν

pipo

b

a

 
         Figure 1: Pressured thick-wall cylinder problem 
 
Mathematical Formulation 
The solution of the thick-wall cylinder problem can be found by solving the equation of 
compatibility in polar coordinates, which is a fourth order partial differential equation of Airy 
stress function (1), or by using axisymmetry conditions to formulate the problem as a second 
order differential equation of displacement (2), or equivalent forms (potential energy, integral 
equation, etc.).  The last approach is adopted in this paper, as it is direct and does not require 
inverse or semi-inverse solution methods (1, 2).  The details of this approach are given in (2) 
and the relevant formulas are summarized as follows.  The radial strain, rε , tangential strain, 

θε , in terms of radial displacement, u  are given as 

 
dr
du

r =ε           (1) 

 
r
u

=θε           (2) 

The radial stress, rσ , and tangential stress, θσ , in terms of radial displacement, u , are given 
as 
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 +

−
=

r
u

dr
duE

r ν
ν

σ 21
        (3) 

 





 +

−
=

r
u

dr
duE ν

ν
σθ 21

        (4) 

The governing equation for radial displacement, u , is given by 

 01
22

2

=−+
r
u

dr
du

rdr
ud          (5) 

Using Equations 3-4, the boundary conditions ir pa −=)(σ  and or pb −=)(σ  can be rewritten 
as  

 ( ) ( )
ip

Ea
auau

21 νν −
−=+′         (6) 

 ( ) ( )
op

Eb
bubu

21 νν −
−=+′         (7) 

First, the exact solution is found, and then a finite element method is presented through 
solving the example problem.  Nodal points chosen for the finite element method are 
uniformly spaced for convenience.  Figure 2 shows how the nodal points and elements are 
numbered. 

  

... nn-10 1Node#
Element# n1

0r
(b)
rnr1 n-1r0

(a)

r

 
       Figure 2: Numbering of nodal points and elements 
 
Exact Solution 
The exact solution of displacement can be found directly by solving the governing 
differential equation, Equation (5), with associated boundary conditions, Equations (6-7), and 
then substituting it into Equations (3-4) to give an exact solution of stresses.  The exact 
solutions (7) of radial displacement, radial stress, and tangential stress are obtained as 

 
( ) ( )

( ) rab
bapp

Eab
rpbpa

E
u oioi

22

22

22

22 11
−

−+
+

−
−−

=
νν      (8) 

 
( )
( ) 222

22

22

22

rab
bapp

ab
pbpa oioi

r −
−

−
−
−

=σ        (9) 

 
( )
( ) 222

22

22

22

rab
bapp

ab
pbpa oioi

−
−

+
−
−

=θσ                  (10) 

Solution for Example Problem 
Substituting the numerical data into Equations (8-10), the exact solution for the example 
problem is 
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 3101047.02254.0 −×





 +=

r
ru                  (11) 

 6
2 1067.1667.66 ×






 −=

rrσ                   (13) 

 6
2 1067.1667.66 ×






 +=

rθσ                   (14) 

Evaluating the solution at three nodal points (inner edge, mr 25.0= ; mid-point, 
mr 375.0= ; and outer edge, mr 5.0= ) along the radial location for comparison, the 

resulted values are given in Table 1. 
 
 
   Table 1: Exact solution evaluated at nodal points 

r (m) 0.25 0.375 0.5 

u (mm) 0.4750 0.3637 0.3221 

σr (MPa) – 200 – 51.85 0 

σθ (MPa) 333.3 185.2 133.3 
 
                         
What are Finite Element Methods? 
The finite element method is a technique used to solve differential equations (ordinary or 
partial).  They are mainly used to solve real world problems, as the differential equations that 
govern these problems cannot be solved exactly, or may be too intractable to be solved 
exactly. 
 
The finite element methods use techniques to approximate the dependant variables of the 
differential equations by functions, and then reduce the unknowns in these functions to a set 
of simultaneous linear equations.  These equations can then be solved by various numerical 
techniques.  However, one needs to understand that finite element methods use a function, 
not the differential equation itself, to develop the approximate solution.  This is unlike the 
finite difference methods, where the derivatives in the differential equations are 
approximated by finite divided difference methods.  The functions used in the finite element 
methods are integral equations.  In the case of the pressure vessel, these equations would 
model the total potential energy due to internal stresses and external loads 
 
The Rayleigh-Ritz method can be viewed as a form of a finite element method where it 
reduces a continuous problem to a problem with a finite number of degrees of freedom.  The 
Rayleigh-Ritz method is based on the principle of stationary potential energy, which states:  
 
“Among all admissible configurations of a conservative system, those that satisfy the 
equations of equilibrium make the potential energy stationary with respect to small variations 
of displacement.  If the stationary condition is a minimum, the equilibrium state is stable.” 
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Mathematically speaking, the Rayleigh-Ritz method is a variational method, based on the 
idea of finding a solution that minimizes a functional.  For elasticity problems, the functional 
is the total potential energy.  The solution must be admissible, that is, satisfying internal 
compatibility (e.g., continuity of displacement) and essential boundary conditions.  For 
problems where displacements are primary unknowns, essential boundary conditions are 
prescriptions of displacement and non-essential boundary conditions are prescriptions of 
stress.  Since the problem considered here, the thick-walled pressured cylinder problem 
where the primary unknown is radial displacement, has no prescription of displacement, there 
is no essential boundary condition. 
 
Potential Energy Formulation 

The cylinder is assumed to be in a plane stress state which gives a  strain energy density, 0U  
as 

 ( )θθεσεσ += rrU
2
1

0                    (15) 

by using Equations (1-4), we get 

 ( ) 
















+













+








−
=

22

20 2
12 r

u
r
u

dr
du

dr
duEU ν

ν
               (16) 

Total strain energy, U  of the cylinder is 

 
( )

∫∫ ∫ ∫∫ ===
b

a

L b

aV

rdrULdzrdrdUdVUU 0
0

2

0
00 2πθ

π

               (17) 

where,  
=L  cylinder length 

 
Work done, W by external forces (internal and external pressures) is 
 ( )

( )
( )

( )
( ) ( )bubLpauaLpdsbupdsaupW oi

S
o

S
i

oi

ππ 22 −=−= ∫∫               (18) 

where, 
=iS inner cylinder surface 
=oS outer cylinder surface 

 
The total potential energy of the cylinder, Π is found as 

 ( ) ( )







+−=−=Π ∫ bubpauaprdrULWU oi

b

a
02π                (19) 

 
Rayleigh-Ritz Method 
The Rayleigh-Ritz method can be outlined as follows.  The potential energy of the system is 
given as ( )ruu ,,′Π=Π . 
Assume a trial solution of the form: ( )mCCCrfu ,,,, 10 =   
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where ( )misCi ..0' =  are unknown parameters, and f  is a known function.  In this paper, we 
consider linear piecewise continuous functions. 
 
Apply admissibility conditions to the trial solution.  If there are nm −  admissibility 
conditions, we have nm −  equations of unknown parameters. 
 
Solve the system of nm −  equations for nm −  unknowns mn CC 1+ , and then plug them 
back into the trial solution, we obtain a new trial solution that is admissible and has fewer 
unknowns ( n  unknowns) ( )nCCCrfu ,,,, 10 = . 
 
Substitute the trial solution into the expression of potential energy.The stationary condition 
for potential energy 0=Πδ  gives 

 ni
Ci

..0 ,0 =








=
∂
Π∂                        (20) 

Here we have a system of n  algebraic equations with n  unknowns.  Solving this system of 
equations, we find the unknown parameters and thus the approximate solution for the radial 
displacement. 
 
Substitute the found solution for radial displacement into Equations (3-4) to find the 
approximation solution for radial stress and tangential stress. 
 
Linear Piecewise Continuous Solution for Example Problem 

Consider the case of 2=n  with uniform spacing nodal points.  The step size for locating 
nodal points is calculated as 
  nabh /)( −=   
     2/)25.05.0( −=   
     125.0= .   
The radial coordinates of the nodal points are 25.0== aro , 375.01 =r , 5.02 == br . 
  
The displacement field is assumed to be a piecewise continuous function of two linear 
segments as 

 




≤≤+
≤≤+

=
5.0375.0   ,

375.025.0   ,

23

10

rrCC
rrCC

u                    (21) 

To make the trial solution, Equation (21), admissible, it must be continuous at 375.0=r , 
which means 
 2310 375.0375.0 CCCC +=+  , or                  (22) 
 2103 375.0375.0 CCCC −+=                   (23) 
The trial solution, Equation (21), then becomes 

 




≤≤+−+
≤≤+

=
5.0375.0   ,375.0375.0

375.025.0   ,

2210

10

rrCCCC
rrCC

u               (24) 
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Substituting Equation (24) and the given numerical data into Equation (19), the total potential 
energy, Π in the cylinder is found as 

 
9

10
2
2

21
2

12010
2
0

10)01250.005000.0912.6

659.415.1642.1250.6184.78(2

×−−+

++++=Π

CCC
CCCCCCCCLπ

            (25) 

The condition that the total potential energy Π is stationary, 

 








=
∂
Π∂

=
∂
Π∂

=
∂
Π∂ 0 ,0 ,0

210 CCC
 

Which gives a system of algebraic equations of the unknown coefficients as 

 








=++
=++
=++

082.13659.442.12
01250.0659.431.3250.61
05000.042.1250.617.157

210

210

210

CCC
CCC
CCC

                (26) 

The unknown coefficients are found as 

 








−=
−=

=

0003191.0
0008496.0

0006737.0

2

1

0

C
C
C

                   (27) 

Substituting Equation (27) into Equation (24), the approximate solution for radial 
displacement is 

 




≤≤−
≤≤−

=
5.0375.0   ,0003191.00004748.0

375.025.0   ,0008496.00006737.0
rr

rr
u                (28) 

Substituting the numerical data and displacement solution from Equation (28) into Equations 
(3-4), we find the radial and tangential stresses as 

 








<<−

<<−
=

5.0375.0   ,38.9440.32

375.025.0   ,2.25197.45

r
r

r
r

rσ                 (29) 

 








<<−

<<−
=

5.0375.0   ,38.940.108

375.025.0   ,2.2512.153

r
r

r
r

θσ                 (30) 

 
The solution of the radial displacement is continuous, since we have forced the trial solution 
to be admissible from the beginning, while the solutions for stresses are discontinuous at the 
interior knot ( 375.0=r ) between the two segments (elements).  To have reasonable results, 
in practice, the stress value at the interior knot is taken as the average of two stress values.  
The numerical solution with 2=n  of the example problem is given in Table 4. 
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    Table 4: Numerical solution, finite element method ( 2=n ) 
 
 
 
 
 
 
     
                            
 
 
    
 
The exact solution and numerical solutions with various values of number of nodal points, 

2=n , 3 , and 4 , are given in Figure 5 for radial displacement, and Figure 6 for radial stress. 
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Figure 5: Radial displacement as a function of radial location (Finite element 
method) 

 

r (m) 0.25 0.375 0.5 

u (mm) 0.4613 0.3551 0.3152 

σr (MPa) – 67.35 – 68.32 – 29.58 

σθ (MPa) 361.7 175.5 121.6 
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   Figure 6: Solution of radial stress as a function of radial location 
 
The solution plots show that the approximate solutions approach the exact solution as the 
number of piecewise continuous functions increase.  However, they do not satisfy the 
boundary conditions of radial stress.  The assumption of the piecewise continuous solution as 
opposed to a continuous solution makes computation easier for a high number of segments in 
the piecewise functions, but it has the drawback of the discontinuity of stresses at the interior 
knots of the piecewise continuous function. 
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Chapter 11.01  
Introduction to Fourier Series 
 
 
 
 
In general, curve fitting interpolation through a set of data points can be done by a linear 
combination of polynomial functions, with based functions 1, .,.......,, 2 mxxx  In this chapter, 
however, trigonometric functions such as ),(cos),......2(cos),(cos,1 nxxx  and 

)(sin),......,2(sin),(sin nxxx will be used as based functions. In the former, the unknown 
coefficients of based functions can be found by solving the associated linear simultaneous 
equations (where the number of unknown coefficients will be matched with the same number 
of equations, provided by a set of given data points). In the latter, however, the unknown 
coefficients can be efficiently solved (by exploiting special properties of trigonometric 
functions) without requiring solving the expensive simultaneous linear equations (more 
details will be explained in Equation 6 of Chapter 11.05). 
 
Introduction  
The following relationships can be readily established, and will be used in subsequent 
sections for derivation of useful formulas for the unknown Fourier coefficients, in both time 
and frequency domains. 

∫ ∫=
T T

dttkwdttkw
0 0

00 )cos()sin(          (1) 

           0=  

∫ ∫=
T T

dttkwdttkw
0 0

0
2

0
2 )(cos)(sin         (2) 

  
2
T

=  

∫ =
T

dttgwtkw
0

00 0)sin()cos(          (3) 

∫ =
T

dttgwtkw
0

00 0)sin()sin(          (4) 

∫ =
T

dttgwtkw
0

00 0)cos()cos(          (5) 
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where                    

fw π20 =            (6) 

T
f 1
=             (7) 

where f  and T  represents the frequency (in cycles/time) and period (in seconds) 
respectively. Also, k and g  are integers. 
A periodic function )(tf  with a period T  should satisfy the following equation 

)()( tfTtf =+           (8) 
Example 1 
Prove that 

 ∫ =
π

0
0 0)sin( tkw  

for 
 fw π20 =  

 
T

f 1
=  

and k  is an integer. 
 
Solution  
Let 

∫=
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Example 2 
Prove that 

 ∫ =
π

0
0

2

2
)(sin Ttkw  

for 
 fw π20 =   
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f 1
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and k  is an integer. 
 
Solution 
Let  
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Example 3 
Prove that 

 ∫ =
π

0
00 0)cos()sin( tkwtgw  

for 
 fw π20 =  

 
T

f 1
=  

and k  and g  are integers. 
Solution 
Let  

∫=
T

dttkwtgwC
0

00 )cos()sin(                                                                                       (15) 

Recall that 
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)cos()sin()cos()sin()sin( αββαβα +=+                 (16) 
Hence, 

( )[ ][ ]∫ −+=
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0
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    [ ]∫ ∫−+=
T T

dttgwtkwdttwkg
0 0

000 )cos()sin()(sin                (18) 

From Equation (1), 
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Adding Equations (15), (19), 
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02 =C , since the right side of the above equation is zero (see Equation 1). Thus, 
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Example 4 
Prove that 
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Solution 
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Since  
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)sin()sin()cos()cos()cos( βαβαβα −=+        
or  

)cos()cos()cos()sin()sin( βαβαβα +−=  
Thus, 
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2D = 0, since the right side of the above equation is zero (see Equation 1). Thus, 
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Chapter 11.02  
Continuous Fourier Series 
 
 
 
 
For a function with period T , a continuous Fourier series can be expressed as [1-5] 

∑
∞
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kk tkwbtkwaatf                   (1) 

The unknown Fourier coefficients ,0a  ka  and kb  can be computed as 

dttf
T

a
T

∫




=

0
0 )(1                      (2) 

Thus, 0a can be interpreted as the “average” function value between the period interval 
],0[ T . 
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     ka−≡    (hence ka is an “even” function) 
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b
0
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     kb−−≡  (hence kb is an “odd” function) 
Derivation of formulas for ,0a  ka  and kb  

Integrating both sides of Equation 1 with respect to time, one gets 
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k
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0 0 0 1 0 1
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The second and third terms on the right hand side of the above equations are both zeros, due 
to the result stated in Equation (1) of Chapter 11.01. 
Thus, 
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Now, if both sides of Equation (1) are multiplied by )sin( 0tmw and then integrated with 
respect to time, one obtains 

∫∑
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Due to Equations (1) and (3) of Chapter 11.01, the first and second terms on the right hand 
side (RHS) of Equation (8) are zero. 
 
Due to Equation (4) of Chapter 11.01, the third RHS term of Equation (8) is also zero, with 
the exception when mk = , which will become (by referring to Equation (2) of Chapter 
11.01) 

∫ ∫++=
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2
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Thus, 
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k dttkwtf
T

b
0

0 )sin()(2          

Similar derivation can be used to obtain ka , as shown in Equation (3) 
 

A FORTRAN Program for finding Fourier Coefficients 0a , ka , and kb            

Based upon the derived formulas for 0a , ka  and kb  (shown in Equations 2-4), a 
FORTRAN/MATLAB computer program has been developed. (The program is available at 
http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/f_coeff_final.m)  
 
Example 1 

Using the continuous Fourier series to approximate the following periodic function ( π2=T  
seconds) shown in Figure 1. 
 

http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/f_coeff_final.m�
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Figure 1 A Periodic Function (Between 0 and π2 ). 
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Specifically, find the Fourier coefficients 810 ,....,, aaa  and 81,...,bb . 
Solution 

The unknown Fourier coefficients kaa ,0  and kb  can be computed based on Equations (2–4); 
as following: 

 ∫
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The “integration by part” formula can be utilized to compute the first integral on the right-
hand-side of the above equation. 
 
For ,8,....,2,1=k  the Fourier coefficients ka  can be computed as 

1162966366257003.01 −=a  
010787210703528576.5 6

2 ≈×−= −a  
32103180707410015.03 −=a  
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4 ≈×−= −a  

893325220254702255.05 −=a  
010026040702653333.5 6

6 ≈×−= −a  
8189771020012997664.07 −=a    
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8 ≈×−= −a    

Similarly, 
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For ,8,....,2,1=k  the Fourier coefficients kb  can be computed as 
9582079999986528.01 −=b   
2852694999993232.02 −=b  
5091943333314439.03 −=b  
23845472499980412.04 −=b  
48723641999971379.05 −=b  
7595531666635603.06 −=b  
46254621428532466.07 −=b  
10192511249957798.08 −=b  

Any periodic function ),(tf  such as the one shown in Figure 1 can be represented by the 
Fourier series as 
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Thus, for ,1=k  one obtains 
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For ,21→=k  one obtains 

)2sin()2cos()sin()cos()( 221102 tbtatbtaatf ++++≈  
For ,41→=k  one obtains 
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                   )4sin()4cos( 44 tbta ++  
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Plots for )(),( 21 tftf  and )(4 tf  are shown in Figure 2. 

 
Figure 2 Fourier Approximated Functions (for Example 1). 

 
It can be observed from Figure 2 that as more terms are included in the Fourier series, the 
approximated Fourier functions are more closely resemble the original periodic function as 
shown in Figure 1. 
 
Example 2 

The periodic triangular wave function )(tf  is defined as 
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Find the Fourier coefficients 810 ,...,, aaa  and 81,...,bb  and approximate the periodic 
triangular wave function by the Fourier series. 
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Figure 3 Periodic triangular wave function for Example 2. 

 
Solution 

The unknown Fourier Coefficients 0a , ka and kb  can be computed based on Equations (2-4) 
as follows 
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Similarly, 
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The “integration by part” formula can be utilized to compute the second integral on the right-
hand-side of the above equations for ka  and kb . 
 
For ,8,...2,1=k  the Fourier coefficients ka  and kb  can be computed and summarized as 
following in Table 1 

Table 1 Fourier coefficients ka  and kb  for various k  values. 
k  ka  kb  
1 0.999997 -0.63661936 
2 0.00 -0.49999932 
3 -0.3333355 0.07073466 
4 0.00 0.2499980 
5 0.1999968 -0.02546389 
6 0.00 -0.16666356 
7 -0.14285873 0.0126991327 
8 0.00 0.12499578 

 
The periodic function (shown in Example 1) can be approximated by Fourier series as 

{ }∑
∞

=

++=
1

0 )sin()cos()(
k

kk ktbktaatf  

Thus, for 1=k , one obtains: 
)sin()cos()( 1101 tbtaatf ++=  

For ,21→=k  one obtains: 
)2sin()2cos()sin()cos()( 221102 tbtatbtaatf ++++=  

Similarly, for ,41→=k one has: 
)3sin()3cos()2sin()2cos()sin()cos()( 33221104 tbtatbtatbtaatf ++++++=  

 )4sin()4cos( 44 tbta ++  
Plots for functions )(and)(),( 421 tftftf are shown in Figure 4. 



11.02.8                                                        Chapter 11.02
  
 

 
Figure 4 Fourier approximated functions for Example 2. 

 
It can be observed from Figure 4 that as more terms are included in the Fourier series, the 
approximated Fourier functions closely resemble the original periodic function. 
 
Complex Form of the Fourier Series 

Using Euler’s identity, ),sin()cos( xixeix += and ),sin()cos( xixe ix −=− the sine and cosine 
can be expressed in the exponential form as 
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Thus, the Fourier series (expressed in Equation 1) can be converted into the following form 
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Define the following constants 

00
~ aC ≡                     (14) 
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Using the even and odd properties shown in Equations (3) and (4) respectively, Equation (16) 
becomes 
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Substituting Equations (14), (15), (17) into Equation (13), one gets 
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The coefficient kC~  can be computed, by substituting Equations (3) and (4) into Equation (15) 
to obtain 
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Substituting Equations (10, 11) into the above equation, one gets 
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Thus, Equations (18) and (20) are the equivalent complex version of Equations (1)-(4). 
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Chapter 11.03  
Fourier Transform Pair: Frequency and Time 
Domain 
 
 
 
 
Introduction 
In Chapter 11.02, Fourier approximations were expressed in the time domain. The amplitude 
(vertical axis) of a given periodic function can be plotted versus time (horizontal axis), but it 
can also be plotted in the frequency domain [1-6] as shown in Figure 1. 

 
Figure 1 Periodic Function (see Example 1 in Chapter 11.02) In Frequency Domain. 

 
The advantages of plotting the amplitude of a given periodic function in frequency domain 
(instead of time domain) are due to the following reasons: 
 
For a specific value “ k ” (say 2=k ) of the Fourier series in the time domain, one has to plot 
the entire curve to observe the amplitude of a given periodic function (recall 

)2sin()2cos()sin()cos()( 221102 tbtatbtaatf ++++= , see Example 1 in Chapter 11.02). 
However, in the frequency domain, the amplitude can be plotted as a single point. (see Figure 
1a). 
 
In the frequency domain, one can easily identify which frequency (or corresponding to which 
value of “ k ”) contributes the most to the amplitude [see Figure 1(a)], where such 
information is not readily available if time domain is used. 
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From the amplitude plot in frequency domain [see Figure 1(a)], one can easily identify that 
contributions to the amplitude beyond the 8th frequency ( 8>k ) are not significant any more. 
 
In real-life structural dynamics problems, such as the dynamical (time-dependent) response 
of a (building) structure subjected to oscillated loads (for example, the operational machines 
attached to the structures), the displacement superposition method is often used to predict the 
(time dependent) displacement response of the structure. This method basically transforms 
the original (large, coupled) equation of motion into a reduced (much smaller size, un-
coupled) equation of motion by making use of the few free vibration mode shapes and its 
associated frequencies. Knowledge of which frequencies (and the corresponding mode 
shapes) that have the most contribution to the predicted dynamical response (such as nodal 
displacement response) plays crucial roles for the algorithms’ efficiencies. 
 
Detailed explanations on how to obtain Figures 1(a), and 1(b) are now presented in the 
following sections. 
 
Explanation of Figure 1(a) and 1(b) 
One starts with Equation (18) and (20) of Chapter 11.02 

∑
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=
k
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k eCtf 0
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where 
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0)(1~  

For the periodic function shown in Example 1 of Chapter 11.02 (or Figure 1 of Chapter 
11.02), one has 
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Define, and using “integration by parts” formula 
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Using the following Euler identities 
 )sin()cos( πππ kike ik −+−=−  
                 )sin()cos( ππ kik −=  
         )cos( πk=  

))2(sin())2(cos()2( πππ kike ik −=−  
            ))2(cos( πk=  

Hence, one obtains (noting that 1)2cos( =πk , for any integer k ):   
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Also, since: 





==+
==−

=
,...)8,6,4,2(integereven 1

,...)7,5,3,1(integer odd1
)cos(

kfor
kfor

kπ  

Hence: 
( )kk 1)cos( −=π  
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From Equation (15) in Chapter 11.02, one has: 

2
~ kk

k
ibaC −

=                     
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Hence upon comparing the above 2 equations, one concludes 

[ ]1)1(1
2 −−





≡ k

k k
a

π
 







 −=

k
bk

1  

Remarks: 
For ;8,...,4,3,2,1=k the values for ka  and kb  (based on the above 2 formulas) are exactly 
identical as the ones presented earlier in Example 1 in Chapter 11.02. 
 
Thus 
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In general, one has 
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Representation of a complex number in polar coordinates 

In Cartesian (rectangular) coordinates, a complex number kC~ can be expressed as: 

( )iIRC kkk +=
~  

where kR and kI  represents the real and imaginary components of kC~ , respectively. 

In polar coordinates, a complex number kC~ can be expressed as: 

{ } { } { }iAAiAAeC i
k )sin()cos()sin()cos(~ θθθθθ +=+==  

where A  and θ  represents the amplitude and phase angle of kC~ , respectively (see Figure 2). 

 
Figure 2 Representation of a complex number in polar coordinates 

Thus, one obtains the following relations between the cartesian and polar coordinate systems: 
( )θcosARk =  
( )θsinAI k =  

Hence: 
( ) ( ) [ ])(sin)(cossincos 222222222 θθθθ +=+=+ AAAIR kk  

222
kk IRA +=  

22
kk IRA +=  

A
Rk=)cos(θ  implies 






= −

A
Rk1cosθ  
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A
I k=)sin(θ  implies 






= −

A
Ik1sinθ  

Based on the above 3 formulas, the complex numbers kC~ , for 8,...,3,2,1=k can be expressed 
as 

iC 





+

−
=

2
11~

1 π
 

     )13770783.2()59272353.0( ie=  
Hence, the amplitude A  and Phase angle θ  for 1

~C  are 0.59272353, and 2.13770783 radians, 
respectively.  The readers should refer to Figures 1(a) and 1(b) to confirm the plotted values. 
 
Important Notes 
If one uses the formula 








= −

A
Rk1cosθ  

   
















 −

= −

59272353.0

1

cos 1 π  

   radians 13770783.2=  
   48.122=  

However, the other formula for θ  gives: 








= −

A
I k1sinθ  

   





= −

59272353.0
5.0sin 1  

   radians 0038848.1=  
   52.57=  

Since kR  is negative, and kI  is positive, the angle θ  must be in the 2nd (or upper left) 
quadrant of a circle (or  18090 ≤≤θ ). Thus, the correct value for θ  should be 

)48.122or(radians 13770783.2 o and the other value for radians 0038848.1=θ must be 
discarded. 
 
Similarly, one obtains 

iC
4
10~

2 +=  

     








= 2)25.0(
πi

e  
     )57079633.1()25.0( ie=  
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10~

8 +=  

     








= 2)0625.0(
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e  
In summary, the given periodic function (shown in Example 1 of Chapter 11.02) can also be 
expressed in complex number formats, in polar coordinate with the amplitudes and phase 
angles given in the following table (also refer to Figures 1(a), and 1(b)). 

Table 1 Amplitude and phase angle (in radians) for varying k  values. 
k  Amplitude  )(radiansAnglePhase  
1 0.59272353 2.13770783 
 
2 

 
0.25 57079633.1

2
=

π
 

3 0.14037798 1.77990097 
 
4 

 
0.125 2

π

 
5 0.100807311 1.69743886 
 
6 

 
0.08333333 2

π

 
7 0.07172336 1.66149251 
 
8 

 
0.0625 2

π
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Non-Periodic Function 
Recall that a periodic function can be expressed in terms of the exponential form, 
accordingly to Equations (18, 20) of Chapter 11.02 as  

∑
∞

−∞=

=
k

tikw
keCtf 0

~)(               









×





= ∫ −

T
tikw

k dtetf
T

C
0

0)(1~        

Define the following function 

∫
−

−=
2

2

0
0)()(ˆ

T

T

tikw dtetfikwF                     (1) 

where )(ˆ
0ikwF is a function of ,,ki  and 0w  

Then, Equation (20) of Chapter 11.02 can be written as 

)(ˆ1~
0ikwF

T
Ck ×






=                      (2) 

and Equation (18) of Chapter 11.02 becomes 

∑
∞

−∞=

×





=

k

tikweikwF
T

tf 0)(ˆ1)( 0                               (3) 

A non-periodic function npf can be considered as a periodic function, with the period  

,∞→T  or 01
→≡∆

T
f  (see Figure 3) 

From Equations (6) and (7) from Chapter 11.01, one gets 
fw π20 =                       (4) 

     
T
π2

=  

     ( )f∆= π2  
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Figure 3 Discretization of frequency data. 

 
From Equation (3), one obtains 

)(lim)(
0

tftf
for

Tnp
→∆
∞→

=   

          ∑
∞

−∞=
→∆

×∆=
k

tikw

f
eikwFf 0)(ˆ)(lim 00

                   (5) 

In the above equation, the subscript ""np denotes non-periodic function. 

∑
∞

−∞=

∆

→∆
∆×∆=

k

ftik

fnp efikFftf ππ 2

0
)2(ˆ)(lim)(                   (6) 

Realizing that ffk =∆  (See Figure 3), the above equation becomes 

∫ ×= fti
np efiFdftf ππ 2)2(ˆ)(  

dfefiFtf fti
np ∫= ππ 2)2(ˆ)(                     (7) 

Multiplying and dividing the right-hand-side of the equation by π2 , one obtains 

∫




= )2()2(ˆ

2
1)( 2 fdefiFtf fti

np ππ
π

π  

          ∫
∞

∞−







= )()(ˆ

2
1

00
0 wdeiwF tiw

π
; inverse Fourier transform                (8) 

Using the definition stated in Equation (1), one has 

∫
∞

∞−

−= )()()(ˆ 0
0 tdetfiwF tiw

np ; Fourier transform                  (9) 
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Thus, Equations (9) and (8) will transform a non-periodic function from time domain to 
frequency domain, and from frequency domain to time domain, respectively. 
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11.04.1 

 
 
 
 
 
Chapter 11.04 
Discrete Fourier Transform 
 
 
 
 
Introduction 
Recalled the exponential form of Fourier series (see Equations 18 and 20 from Chapter 
11.02), 

∑
∞

−∞=

=
k

tikw
k eCtf 0

~)(             (18, Ch. 11.02) 









×





= ∫ −

T
tikw

k dtetf
T

C
0

0)(1~            (20, Ch. 11.02) 

While the above integral can be used to compute kC~ , it is more preferable to have a 

discretized formula version to compute kC~ . Furthermore, the Discrete Fourier Transform (or 
DFT) [1–5] will also facilitate the development of much more efficient algorithms for Fast 
Fourier Transform (or FFT), to be discussed in Chapters 11.05 and 11.06. 
 
Derivations of DFT Formulas 

If time “ t ” is discretized at ,,.......,3,2, 321 tnttttttt n ∆=∆=∆=∆=  
 
Then Equation (18, of Chapter 11.02) becomes 

∑
−

=

=
1

0

0
~)(

N

k

tikw
kn

neCtf                                 (1) 

To simplify the notation, define 
ntn =                                  (2) 

Then, Equations (1) can be written as 

∑
−

=

=
1

0

0
~)(

N

k

nikw
k eCnf                      (3) 

In the above formula, “ n ” is an integer counter. However, )(nf  and nt  do NOT have to be 
integer numbers. 
 
Multiplying both sides of Equation (3) by nilwe 0− , and performing the summation on “ n ”, one 
obtains ( note:  l = integer number) 
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Switching the order of summations on the right-hand-side of Equation (6), one obtains 
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Define 

∑
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2)(N

n

n
N

lki
eA

π

                     (8) 

There are 2 possibilities for ( 1−k ) to be considered in Equation (8) 
 
Case(1): ( k -l ) is a multiple integer of N , such as 
    k( -l ) = mN;  or  k = l + mN where ,......2,1,0 ±±=m   
Thus, Equation (8) becomes: 
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2
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n

nimeA π                       (9) 
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−
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0
)2sin()2cos(
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mnimn ππ  

Hence: 
NA =                               (10) 

Case(2): ( k -l ) is NOT a multiple integer of N  
In this case, from Equation (8) one has 
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Define: 
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 −= )2)(sin)2)(cos

N
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N
lk ππ  

;1≠a because ( k -l ) is “NOT” a multiple integer of N                           (13) 
Then, Equation (11) can be expressed as 

∑
−

=

=
1

0

N

n

naA                     (14) 

From mathematical handbooks, the right side of Equation (14) represents the “geometric 
series”, and can be expressed as 
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NaA
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n ==∑
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 if 1=a                                                    (15) 
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a N
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=
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1  if 1≠a                                                             (16) 

Because of Equation (13), hence Equation (16) should be used to compute A . Thus 

a
aA

N

−
−

=
1

1  (See Equation (12))                             (17) 
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e lki

−
−

=
−

1
1 2)( π

 

Since ( 1−k ) is still a multiple of π2 , hence 
{ } { }πππ 2)(sin2)(cos2)( lkilke lki −+−≡−                            (18) 

             1=  
Substituting Equation (17) into Equation (18), one gets 

0=A                      (19) 
Thus, combining the results of case (1) and case (2), one gets (see Equations (10) and 
Equation (19)) 

0+= NA                                           (20) 
Substituting Equation (20) into Equation (8), and then referring to Equation (7), one gets 
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~)( 0
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k
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n

nilw NCenf                             (20a) 

Recalled mNlk +=  (where ml,  are integer numbers), and since k  must be in the range 
10 −→ N , therefore 0=m . Thus: 

mNlk +=  becomes lk =  
Equation (20a) can, therefore, be simplified to 
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Thus 
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where  
ntn ≡  

and 
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k eCnf                                                                                        (3, repeated) 

        { }∑
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k
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Remarks: 
 
(a) Consider the exponential term in Equation (1). Let  
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)2()( 0
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N
iknikw eeE

∗×
==

π

 
If one replaces “ n ” by “ )( nN −− ” (or “ )( Nn − ”) into the above equation, then one obtains 

[ ]1)2()*2()(2

=×= ×−×−×× π
ππ

ikn
N

ikNn
N

ik
eee  

       E=  
Thus, Equation (1) indicates that the force corresponding to frequencies of order “ n ” and 
“ NnnN −=−− )( ” have the same values. Hence 

wnwn =   for 
2
Nn ≤  

      wnN )( −−=  for 
2
Nn >  

and the frequency corresponding to 
2
Nn = is the highest frequency that can be considered in 

the discrete Fourier series (
2
Nw  is called the Nyquist frequency). If there are harmonic (force) 

components above 
2
Nw  in the original function, then these higher components will introduce 

distortions in the lower harmonic components (known as ALIASING phenomenon). Because 
of the ALIASING phenomenon, the number of ( N ) data points should be “at least twice” the 
highest harmonic component presents in the (forcing) function, for sufficient computational 
accuracy. As an example, if the forcing function is given as 

∑
=

×=
16

1
)2cos(100)(

n
nttF π  

then, the minimum value of N  ( = Number of sample data points ) should be .32min =N  

(b) The factor ,1








N
 shown in the DFT Equation (21), is merely a scale factor. It can also be 

placed in the inverse Fourier Transform Equation (1), but not both. 
Thus, Equations (21) and (1) can be re written as 
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                            (23) 

To avoid computation with “complex numbers”, Equation (22) can be expressed as 

{ }∑
−

=

−×
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1

0
)sin()cos()()(~~ N

k

IRI
n

R
n ikfikfCiC θθ                       (22a) 
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πθ 2
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The above “complex number” equation is equivalent to the following 2 “real number” 
equations 

{ }∑
−

=

+=
1

0
)sin()()cos()(~ N

k

IRR
n kfkfC θθ                       (22c) 

{ }∑
−

=

−=
1

0
)sin()()cos()(~ N

k

RII
n kfkfC θθ                       (22d) 

Computer program implementation for the DFT equations (22c, 22d) are given at 
http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/dft.m . 
 
Detailed Explanation About Aliasing Phenomenon, Nyquist Samples, Nyquist Rate.  

When a function ),(tf  which may represent the signals from some real-life phenomenon 
(shown in Figure 1), is sampled, it basically converts that function into a sequence )(~ kf  at 
discrete locations of .t  These discrete locations are assumed to have “equally spaced and the 
distance between any 2 samples is .t∆  Thus, )(~ kf  represents the value of ),(tf  at 

,0 tktt ∆+=  where 0t  is the location of the first sample ).0( =kat  If the sample locations 
were done properly, then the original function ),(tf  can be recovered through interpolation 
process of these discrete sample values. 
 

 
Figure 1 Function to be Sampled and “Aliased” Sample Problem. 

 
In Figure 1, the samples have been taken with a fairly large .t∆  Thus, these sequence of 
discrete data will not be able to recover the original signal function )(tf . For example, if all 
discrete values of ),(tf  were connected by piecewise linear fashion, then a nearly horizontal 
straight line will occur between 1t  through 11t , and 12t  through 16t , respectively (See Figure 
1). These piecewise linear interpolation (or other interpolation schemes will NOT produce a 
curve which resemble well with the original function )(tf . This is the case where the data has 
been “ALIASED”. 

http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/dft.m�
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Figure 2 Function to be sampled and “Windowing” Sample Problem. 

 
Another potential difficulty in sampling the function is called “windowing” problem. As 
indicated in Figure 2, while t∆  is small enough so that a piecewise linear interpolation for 
connecting these discrete values will adequately resemble the original function )(tf , 
however, only a portion of the function )(tf  has been sampled (from 1t  through 12t ) rather 
than the entire one. In other words, one has placed a “window” over the function. 
 
To avoid aliased phenomenon, the sample space t∆  should be small enough so that the 
discrete sequence will recover back the original function )(tf . The “sampling theorem” can 
be stated as: 
 
“If the function )(tf  is band-limited with bandwidth max2w , ≡)(wF  Fourier transform of 

0)( =tf  for 0max >≥ ww  then )(tf  is uniquely determined by a knowledge of its values at 

uniformly spaced intervals t∆  apart, with 
max2

1
w

t =∆ . 

The above “sampling theorem” can be loosely explained through the help of Figure 3. 
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Figure 3 Frequency of sampling rate ( Sw ) versus maximum frequency content ( maxw ). 

To satisfy 0)( =wF , for maxww ≥ , the frequency ( w ) should be between points A  and B  of 
Figure 3. 
Hence 

maxmax wwww s −≤≤  
which implies 

max2wws ≥  
Physically, the above equation states that one must have at least 2 samples per cycle of the 
highest frequency component present (Nyquist samples, Nyquist rate). 
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Figure 4 Correctly reconstructed signal. 

 
Figure 5 Wrongly reconstructed signal. 
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In Figure 4, a sinusoidal signal is sampled at the rate of 6 samples per 1 cycle (or 06wws = ). 
Since this sampling rate does satisfy the sampling theorem requirement ( )max2wws ≥ , the 
reconstructed signal does correctly represent the original signal.  However, as indicated in 

Figure 5 a sinusoidal signal is sampled at the rate of 6 samples per 4 cycles 





 = 04

6 wwor s . 

Since this sampling rate does NOT satisfy the requirement ( )max2wws ≥ , the reconstructed 
signal would wrongly represent the original signal. 
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Chapter 11.05 
Informal Development of Fast Fourier Transform 
(FFT) 
 
 
 
 
Introduction 
Recalled the DFT pairs of Equations (22) and (23) (of Chapter 11.04) and swapping the 
indices kn, one obtains: 

∑
−

=







 =−

=
1

0

2
0

)(~ N

k

k
N

win

n ekfC
π

                           (1) 

∑
−

=







 =







=

1

0

2~ 01)(
N

n

k
N

win
n eC

N
kf

π

                    (2) 

where 1,...3,2,1,0, −= Nkn           (3) 
While the above DFT pairs of equations are convenient for computer implementation, they 
still require substantial computation effort. The objective of this chapter, therefore, is to 
develop the improved version of DFT (namely Fast Fourier Transform, or FFT) so that much 
larger sampling data can be handled more efficiently. 
Let  

N
i

eE
π2

−
= (hence 1)2sin()2cos(2 =−== − πππ ieE iN )                (4) 

Then Equation (1) and Equation (2) become 

∑
−

=

==
1

0
)()(~~ N

k

nk
n EkfnCC                     (5) 
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=

−
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1

0

~1)(
N

n

nk
n EC

N
kf  

It should be emphasized here that in performing interpolation, one usually has to solve a 
system of equations to determine the unknown coefficients of the linear combination of basis 
functions that fit the given data. For example, if 4=N , then one need to solve the following 
system (see the second part of Equation (5)), for obtaining{ }C~ , with a given vector { }f . 
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However, the inverse of the above coefficient matrix can be easily obtained as 
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Thus, the unknown vector { }C~  can be computed as matrix times vector operations, as 
following: 
Assuming ,24 )2( === rN  then (see the first part of Equation (5)) 









































=





















)3(
)2(
)1(
)0(

)3(~
)2(~
)1(~
)0(~

)3)(3()2)(3()1)(3()0)(3(

)3)(2()2)(2()1)(2()0)(2(

)3)(1()2)(1()1)(1()0)(1(

)3)(0()2)(0()1)(0()0)(0(

f
f
f
f

EEEE
EEEE
EEEE
EEEE

C
C
C
C

                                   (6) 









































=





















)3(
)2(
)1(
)0(

)3(~
)2(~
)1(~
)0(~

9630

6420

3210

0000

f
f
f
f

EEEE
EEEE
EEEE
EEEE

C
C
C
C

                  (7) 

For 4=N , 2=n  and 3=k , then 
6EE nk =  

        [ ] 2)4( EE N==  

        2
2

Ee
N

N
i









=

− π

 

        [ ] 22 Ee i π−=  
        2E=  

The term inside the square bracket is equal to 1, since 
)2sin()2cos(][ 2 πππ −+−=− ie i  

            )2sin()2cos( ππ i−=  
 1)0(1 =−= i  

For 4=N , 3=n  and 3=k , then 
9EE nk =  

        18 ][ EE=  
        12 ][ EE N=  

        122

Ee
N

N
i









=

×−
π

 

        [ ] 14 Ee i π−=  
        1E=  
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In the above equation, one should recall the following Euler identity 
)4()4(4 πππ iSinCose i −=−  

         1=  
Thus, in general (for )Nnk ≥  

Unk EE =   
where  
 ),mod( NnkU =                      (8) 

     = remainder of 







N
nk  

Remarks: 
Matrix times vector, shown in Equation (7), will require 16 (or )2N complex multiplications 
and 12 (or )1(* −NN ) complex additions. 
Usage of Equation (8) will help to reduce the number of operation counts, as explained in the 
next section. 
 
Factorized Matrix and Further Operation Count 
Equation (7) can be factorized as: 
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Remarks: 
The theory behind the 2 matrices on the right hand side (RHS) of Equation (9) will be clearly 
explained soon (see Equations 11 and 15, in chapter 11.06). 
The order of the left-hand-side (LHS) vector has been changed, such as rows 2 and 3 have 
been swapped. 
Let the row-interchanged LHS vector be defined as 
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Now performing the inner-product (matrix times vector) on the RHS of Equation (9), one 
obtains 
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or 
)2()0()0( 0

1 fEff +=                            (11a) 
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)3()1()1( 0
1 fEff +=                                           (11b) 

           )2()0()2( 0
1 fEff −=                            (11c) 

since  

 
2*

4
2

2
πi

eE
−

=  
        πie−=  
        1−=  
        0E−=  

)3()1()3( 2
1 fEff +=  

         )3()1( 0 fEf −=                                        (11d) 
Equations (11a through 11d) for the “inner” matrix times vector requires 2 complex 
multiplications and 4 complex additions. 
In Equations (11a–11d), 0E  is intentionally not reduced to the numerical value of 1.0 to 
facilitate the discussions of more general cases. 
Finally, performing the “outer” product (matrix times vector) on the RHS of Equation (9), 
one obtains: 
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                          (13) 

or 
)1()0()0( 1

0
12 fEff +=                           (14a) 

)1()0()1( 1
2

12 fEff +=                        (14b) 
          )1()0( 1

0
1 fEf −=  

)3()2()2( 1
1

12 fEff +=                           (14c) 
)3()2()3( 1

3
12 fEff +=  

          )3()2( 1
12

1 fEEf +=  
          )3()2( 1

1
1 fEf −=                           (14d) 

Again, Equations (14a-14d) requires 2 complex multiplications and 4 complex additions. 
Thus, the complete RHS of Equation (9) can be computed by only 4 complex multiplications 

(or )
2
24

2
=

rN and 8 complex additions (or 24×=Nr ). Since computational time is mainly 

controlled by the number of multiplications, hence implementing Equation (9) will 
significantly reduce the number of multiplication, as compared to direct matrix times vector 
operations (as shown in Equation (7)). 
 
For large value of data points ( N= ), the ratio of complex multiplications by using Equation 
(7) and Equation (9) can be computed as 
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                  (15) 

For ,22048 )11( === rN  Equation (15) gives 

 36.372
11

)2048(2
==Ratio ,  

which basically implies that the number of complex multiplications involved in Equation (9) 
is about 372 times less than the one involved in Equation (7). 
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Graphical flow of Equation (9), for case 422 2 === rN  
Equation (9) can also be presented in the graphical form, as shown in Figure 1. 

 
Figure 1 Graphical form of FFT (Equation 9) for the case 422 2 === rN . 

 
Remarks: 

a) Computed vector 1 does correspond to Equations (11a–11d). 
b) Computed vector 2 does correspond to Equations (14a-14d).  
c) Since 2=r  in this example, one needs to compute 2 vectors { })(and)( 21 kfkf=  
d) Each node in the graph is computed from 2( r= ) nodes in the “previous” vector. 
e) Factor UE  (such as ),,, 3210 EEEE  appears near the arrow head of the transmission 

path. Absence of UE implies that 10 == EEU . 
For example: 1

112 )3()2()2( Efff += , which is the same as Equation (14c). 
 
Graphical Flow of Equation (9), for case 1622 4 === rN  
To see a more detailed computational patterns of FFT, a slightly larger data size 
( 1622 4 === rN ) is shown in the graphical form, as indicated in Figure 2. 
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Figure 2 Graphical form of FFT (Equation 9) for the case 1622 4 === rN . 
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Companion Node Observation 

Careful observation of Figure 2 reveals that for each computed thl -vector (where 
rl ......2,1= ; and 1622 4 === rN ), we can always find two (companion) nodes which came 

from the same pair of nodes in the previous vector. For example, )0(1f  and )8(1f  are 
computed in terms of )0(f  and )8(f . Similarly, the companion nodes )8(2f  and )12(2f  are 
computed from the same pair of nodes )8(1f  and )12(1f .  
Furthermore, the computation of companion nodes is independent of other nodes (within the 

thl -vector). Therefore, the computed )0(1f  and )8(1f will override the original space of  
)0(f  and )8(f . Similarly, the computed )8(2f  and )12(2f  will over ride the space occupied 

by )8(1f  and )12(1f , which in turn, will occupy the original space of )8(f  and )12(f . 
Hence, only one complex vector (or 2 real vectors) of length N  are needed for the entire 
FFT process. 
 
Companion Node Spacing 
Observing Figure 2, the following statements can be made: 

a) in the first vector )1( =l , the companion nodes )0(1f  and )8(1f  is separated by 8=k  

(or )8
2
16

2 1 ==l

N spaces. 

b) In the second vector )2( =l , the companion nodes )8(2f  and )12(2f  is separated by 

4=k  (or ).
4

16
2
16

2 2 ==l

N  

 
Companion Node Computation 

The operation counts in any companion nodes (of the ndthl 2=  vector), such as )8(2f  and 
)12(2f  can be explained as (see Figure 2): 

4
112 )12()8()8( Efff ×+=                              (16) 

12
112 )12()8()12( Efff ×+=  

           48
11 )12()8( EEff ×+=  

           4

8

)16(
2

11 )12()8( Eeff N
i












+= =

−
π

 

           [ ] 4
11 )12()8( Eeff iπ−+=  

           4
11 )12()8( Eff ×−=                   (17) 

Thus, the companion nodes )8(2f  and )12(2f  computation will require 1 complex 
multiplication and 2 complex additions (see Equations (16-17)). The weighting factors for 

the companion nodes [ )8(2f  and )12(2f ] are )(4 UEorE  and )( 212
NU

EorE
+

, respectively. 
Thus, in general 
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)
2

()()( 11 ll
U

ll
NkfEkfkf ++= −−                             (18) 

)
2

()()
2

( 11 ll
U

lll
NkfEkfNkf +−=+ −−                             (19) 

Skipping computation of certain nodes 

Because the pair of companion nodes “ k ” and "
2

" L

Nk +  are separated by the “distance”. 

( )
2L

N
= , hence, at the thL  level, after every L

N
2

 node computation, then the next L

N
2

 nodes 

will be skipped! (see Figure 2). 
 
Determination of UE  

The values of “U ” can de determined by the following steps: 
 
Step 1: Express the index k  ( 1,...,2,1,0 −= N ) in binary form, using r  bits. For 8=k , 2=L  
and 4=r ;  or 1622 4 === rN , one obtains 

8=k  
   0,0,0,1=  
   01231 2)0(2)0(2)0(2)1( +++= =−r  

Step2: Sliding this binary number “ 224 =−=− Lr ” positions to the right, and fill in zeros, 
the results are 

0,1,0,00,1,,0,0,0,1 →→ XX  
It is important to realize that the results of Step 2 (0,0,1,0) is equivalent to express an integer 

 Lr

kM −=
2

  

      242
8
−=  

      2=  
in the binary formats. In other words, )0,1,0,0(2 ==M . 
Step3: Reverse the order of the bits, then (0,0,1,0) becomes 0,1,0,0 E= .  Thus, 

0123 2)0(2)0(2)1(2)0( +++=U  
    4=  

It is “NOT” really necessary to perform Step 3, since the results of Step 2 can be used to 
compute “ E ” as following 

3210 2)0(2)1(2)0(2)0( +++=U  
    4=  

In conclusion, for 8 ;2 ;1622 4 ===== kLN r  and 4=U ; the computation of companion 
nodes from general formulas (see Equations (18) and (19)) gives 

)12()8()8( 1
4

12 fEff +=  
)12()8()12( 1

4
12 fEff −=  

The above 2 equations are identical to Equations (16) and (17). 
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Computer Implementation to Find Value of “U” (in )UE  

Based on the previous discussions (with the 3-step procedures), to find the value of “U ”, one 

only needs a procedure to express an integer Lr

kM −=
2

 in binary formats, with “ r ” bits. 

Assuming M  (a base 10 number) can be expressed as (assuming 4=r  bits) 
1234 aaaaM =                                 (20) 

     1J=  

Divide M  by 2 (say, )
2

1
2

JJ = , multiply the truncated result by 2 (say, ),222 ×= JJJ and 

compute the difference between the original number 1JM ==  and 2JJ . 









×





−=−= 2

221
Truncated

MMJJJIDIFF                            (21) 

If ,0=IDIFF  then the bit 01 =a  
If ,0≠IDIFF  then the bit 11 =a  
Once the bit 1a  has been determined, the value of 1J  is set to 2J  (or value of 1J  is reduced 
by a factor of 2), since the previous  

MJ =1  
     1234 aaaa=  

3
4

2
3

1
2

0
11 2)(2)(2)(2)( aaaaJ +++=   

and similar process can be used to determine the value of bit ,2a  etc. 
Example 1 

 For 8=k ; 4;216 === rN r bits and 2=L , Find the value of U . 

Lr

kM −=
2

 

     242
8
−=  

     2=  
     1J=  

Determine the bit 1a : (Index 1=I ) 
Initialize 0=U  

2
1

2
JJ =  

     
2
2

=  

     1=  
)2( 221 ×=−= JJJJIDIFF  

            )2)(1(2 −=  
 0=  

Thus  
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01 =a  
IDIFFUU +×= 2  

    020 +×=  
    0=   

or  
 IraUU −+= 2)( 1  
     32)0(0 +=  
     0=  
Determine the bit 2a  [Index 2=I ] 

21 JJ =  
     1=  

2
1

2
JJ =  

     
2
1

=  

     0=  
)2( 221 ×=−= JJJJIDIFF  

            )20(1 ×−=  
 1=  

Thus 12 =a  
IDIFFUU +×= 2  

    120 +×=  
    1=   

or  
 IraUU −+= 2)( 2  
     22)1(0 +=  
     4=  
Determine the bit 3a  [Index 3=I ] 

21 JJ =  
     0=  

2
1

2
JJ =  

        
2
0

=  

        0=  
)2( 221 ×=−= JJJJIDIFF  

            )20(0 ×−=  
 0=  

Thus 03 =a  
IDIFFUU +×= 2  

    021 +×=  
    2=   
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or  
 IraUU −+= 2)( 3  
     12)0(4 +=  
     4=  
Determine the bit 4a  [Index rI == 4 ] 

21 JJ =  
     0=  

2
1

2
JJ =  

     
2
0

=  

     0=  
)2( 221 ×=−= JJJJIDIFF  

            2)0(0 ×−=  
  0=  

Thus 04 =a  
IDIFFUU +×= 2   

    022 +×=  
    4=  

or  
 IraUU −+= 2)( 4  
     02)0(4 +=  
     4=  
 
Remarks: 
Although the “intermediate” results might be different, at the end of the do-loop process 
(computing 4a ), both formulas for “U ”, such as  

orIDIFFUU ;2+×=                              (22) 
;2)( Ir

IaUU −+=  where rU ,...,3,2,1=                 (23) 
will eventually give the same final answers for “U ”. 
 
Example 2 
For 12=k ; ;216 4=== rN  and .3=L  Compute the corresponding value of U ? 
One has 

 Lr

kM −=
2

 

       342
12
−=  

  21 JJ =   
      3=  
Determine the bit :1a  (Index 1=I ) 
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Initialize 0=U  

2
1

2
JJ =  

     
2
6

=  

     3=  
)2( 221 ×=−= JJJJIDIFF  

            )2)(3(6 −=  
 0=  

Thus  
01 =a  

IDIFFUU +×= 2   
    020 +×=  
    0=  

or  
 1

1 2)( −+= raUU  
     32)0(0 +=  
     0=  
Determine the bit 2a  [Index 2=I ] 

21 JJ =  
     3=  

2
1

2
JJ =  

       
2
3

=  

       1=  
)2( 221 ×=−= JJJJIDIFF  

    2)1(3 ×−=  
 1=  

Thus 12 =a  
IDIFFUU +×= 2   

    120 +×=  
    1=  

or  
 2

2 2)( −+= raUU  
     22)1(0 +=  
     4=  
Determine the bit 3a  [Index 3=I ] 

21 JJ =  
     1=  

2
1

2
JJ =  
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2
1

=  

     0=  
)2( 221 ×=−= JJJJIDIFF  

   2)0(1 ×−=  
 1=  

Thus 13 =a  
IDIFFUU +×= 2  

    121 +×=  
    3=  

or  
 3

3 2)( −+= raUU  
     12)1(4 +=  
     6=  
Determine the bit 4a  [Index 4=I ] 

21 JJ =  
     0=  

2
1

2
JJ =  

     
2
0

=  

     0=  
)2( 221 ×=−= JJJJIDIFF  

            2)0(0 ×−=  
 0=  

Thus 04 =a  
IDIFFUU +×= 2  

    023 +×=  
    6=   

or  
4

4 2)( −+= raUU  
    02)0(6 +=  
    6=  

Remarks: 
Although both formulas for “U ”, shown in Equations (22) and (23), will yield the same 
“final” value of “U ”. Implementation of Equation (22) will be more computationally 
efficient. 
 
Unscrambling the FFT 

For the case 4216 === rN  (see Figure 2), the final ‘bit-reversing’ operation for FFT is 
shown in Figure 3. 
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Figure 3 Final “bit-reversing” for FFT (with )1622 4 === rN . 

 
For do-loop index 0)0,0,0,0()0,0,0,0(0 ==⇒== ik   
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Hence, )0(4f = )0(4f ; no swapping. 
 
For  0)0,0,0,1()1,0,0,0(1 ==⇒== ik =bit-reversion=8 
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Endif
Tif

ifkf
kfT

ThenkGTiIf

=
=

=

)(
)()(

)(
)..(

4

44

4

 

Hence, )1(4f = )8(4f ; are swapped. 
 
For 4)0,0,1,0()0,1,0,0(2 ==⇒== ik  
Hence, )2(4f = )4(4f ; are swapped. 
 
For  12)0,0,1,1()1,1,0,0(3 ==⇒== ik  
Hence, )3(4f = )12(4f ; are swapped. 
 
For  2)0,1,0,0()0,0,1,0(4 ==⇒== ik  
In this case, since “ i ” is not greater than “ k ”. 
Hence, no swapping, since )2(4 =kf  and )4(4 =if ; had already been swapped earlier. 
. 
. 
. etc… 
 
Computer Implementation of FFT (for case rN 2= ). 

The pair of companion nodes computation are given by Equations (18, 19). To avoid 
“complex number” operations, Equation (18) can be computed based on “real number” 
operations, as following: 

{ } { })()()()( 11 kifkfkifkf I
L

R
L

I
L

R
L −− +=+  

                               { }






 +++×++ −− )

2
()

2
( 11

,,
L

I
LL

R
L

IURU NkifNkfiEE                       (24) 

In Equation (24), the superscripts R  and I  denote real and imaginary components, 
respectively. 
Multiplying the last 2 complex numbers, one obtains: 

{ } { })()()()( 11 kifkfkifkf I
L

R
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I
L

R
L −− +=+  

                              






 +×−+×+ −− )

2
()

2
( 1

,
1

,
L

I
L

IU
L

R
L

RU NkfENkfE  

                              






 +×++×+ −− )

2
()

2
( 1

,
1

,
L

R
L

IU
L

I
L

RU NkfENkfEi                           (25) 

Equating the real (and then, imaginary) components on the Left-Hand-Side (LHS), and the 
Right-Hand-Side (RHS) of Equation (25), one obtains 
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Recall Equation (4) 
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       θie−=  
       )sin()cos( θθ i−=  
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Thus 
)cos(, θ=RUE                                         (29a) 
)sin(, θ−=IUE                             (29b) 

Substituting Equations (29a, 29b) into Equations (26a, 26b), one gets 
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Similarly, the single (complex number) Equation (19) can be expressed as 2 equivalent (real 
number) equations, such as equations (30a, 30b). 
Listing of computer implementation of serial FFT algorithm is given at 
http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/general_fft.m  
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